
-->

Table of Contents

Introduction
Welcome to Linux

Welcome to the Linux operating system and the third edition of Linux Installation and Configuration!
Whether you are looking for a version of UNIX that you can run on an inexpensive PC or are just totally
disgusted with the antics of Microsoft et al. when it comes to operating systems, we think you’ll get a lot
out of this book.

In these pages, you’ll be guided through a Linux installation and configuration process from beginning
to end. You’ll also learn about the many unique tools offered by the Linux operating system, as well
how to use these tools in a variety of situations.

What is Linux?

Linux (pronounced lih-nux) is a 32-bit operating system designed for use on Intel 80386 (or better) PCs.
Technically, Linux is a UNIX workalike, which means that it responds to standard UNIX commands and
will run UNIX programs. You might see some references elsewhere to Linux as a UNIX clone, but
that’s not strictly correct. (If it were a UNIX clone, Linux would be a lot more expensive than it is, due
to the additional overhead of licensing fees.)

Linux began life as the project of a single man, Linus Torvalds (then a student at the University of
Finland at Helsinki), who wanted his own alternative to another UNIX alternative—namely, the Minix
operating system. He designed Linux to be similar to Minix (the original Minix filesystem was
incorporated into Linux), yet more stable and freely available.

For a long time Linux was an operating system under development, as many beta versions of Linux
circulated throughout the computer world—mostly distributed through the Internet world. Version 0.2
was released to the world in the middle of 1991; in 1994, version 1.0 was finally released. A ready and
willing group of volunteers helped Torvalds finish Linux; additionally, these volunteers (including one
of the authors of this book, Patrick Volkerding) helped create the add-on software that helps make Linux
so popular. The CD-ROMs that accompany this book are based on Linux 2.0.

Linux, as an operating system, is actually rather trim and fit. You could install Linux from a three-disk
set (the a series, which you’ll learn about in Chapter 2). So why do you need two CD-ROMs, filled to
the brim with bits and bytes? Because the core Linux operating system, as such, doesn’t do much more
than offer a command line and respond to the core UNIX commands. You’ll need the additional
software—ranging from utilities like diff from the Free Software Foundation to compilers and editors.

Because this additional software is different from distribution to distribution (on the accompanying CD-
ROMs, you’re using the highly regarded Slackware distribution), there are differences between Linuxes
(Linuci? Linuces?) available on the market. (For example, the installation program—so critical for many
users—is unique to Slackware.) And Linux features its own graphical interface, based on the X Window
System.

This leads us to one essential truth about Linux (something also true about UNIX): Linux is a series of
tools. You use one tool to do one thing, another tool to perform another function. As a set of tools, the
Slackware distribution is more than just Linux.

What Makes Slackware Linux Special?

Why use Linux? The following features make Linux special in the operating system world:

• Linux is an alternative to the commercial operating system world. There’s something to be
said for striking a blow against the Empire. Linux is the result of many hours of volunteer
workers who believed that a grass-roots approach to software development was a more harmonic
approach than commercial offerings. Whether you buy into this ethos is up to you, but you cannot
help but be impressed that such an outstanding computer operating system, rich in complexity
and features, is the work of so many.
• Linux is built for the Internet and networking. The Internet is all the rage, and the Linux
world is part of the hubbub. Linux probably wouldn’t be where it is today without the Internet, as
hundreds of volunteers have collaborated via the Internet, shipping source code and program files
from machine to machine. In addition, Linux can be used right out of the box for Internet and
networking; there’s no need to buy additional software. All you need to do is configure what you
have.
• Linux is completely open. You get the source code for the Linux operating system on an
accompanying CD-ROM. If you want to make changes to the operating system, you can do so. If
you want a driver for your oddball peripheral, you can write it yourself or con someone else into
writing it for you.

Why Should You Use Linux?

Because it runs UNIX programs—most notably through compiling original source code written for the
many UNIX variants around the world—Linux is the ideal platform for many potential users:

• Users who want to learn more about the UNIX operating system and the X Window System.
• Internet surfers who want a powerful platform for cruising the Net.
• System administrators who want an alternative to expensive UNIX workstations, either in their
workplace or at home.
• Programmers who want a cheap home or small-business platform for developing software that
can be used on other, more powerful UNIX systems.

There are many features to Linux that you should find attractive:

• You’ve already paid for it. By purchasing this book, you’ve purchased a full implementation
of Linux, complete with scads of useful programs.
• Linux follows standards. For the most part, Linux and its tools follow various standards, such
as POSIX compliance. As a programming platform, Linux can be used to develop and test code
for a wide variety of platforms.
• Linux can be used for most of your everyday needs. True, Linux lacks the wide range of
applications found in the PC world. However, for most of your daily tasks (particularly if you
want to use Linux for programming or the Internet), the accompanying CD-ROMs contain
enough tools to satisfy most of your needs.
• Linux runs binaries created on other PC versions of UNIX. The new iBCS capability
allows you to run a program that was compiled for another Intel-based PC, including SCO UNIX
and FreeBSD.

Will Linux replace more popular operating systems, like MS/PC-DOS and Windows? That depends on
your needs. For many basic computing tasks—word processing, spreadsheets,
telecommunications—Linux and the Slackware distribution are a perfectly adequate alternative to other
PC operating systems. As a development platform, Linux is more than adequate. Because Linux is freely
available, it attracts the attention of many programmers and developers who release their software to the
computing community—meaning that there’s a decent selection of software in the computing world,
even beyond what’s available on the CD-ROMs with this book. The one drawback to Linux—which,
admittedly, is a major drawback—is the lack of robust applications for everyday use. True, you can do
work with emacs and groff for document creation, but this process is awkward at best. Given the track
record of the UNIX industry and the robust growth enjoyed by Linux, you can expect to see many more
applications down the road.

Of course, this isn’t to say that you won’t use the applications on the CD-ROMs with this book. For
many, the use of Linux as an Internet tool will alone be worth the price of the book. Programmers who
want to code for other UNIX and X Window platforms will also find this book and its CD-ROMs
extremely useful.

Linux, Slackware, and This Book

This book isn’t a general primer on the Linux operating system. Instead, we’ve decided to focus on the
version of Linux included on the accompanying CD-ROMs. We made this decision because the world of
Linux is very wide and varied, and despite what some people think, there are differences among Linux
distributions.

If you own another Linux distribution, there will be things in this book that apply to your distribution
(particularly in Chapter 4 and beyond). However, be warned that we’re sticking to the Slackware
distribution of Linux for the particulars in this book.

What is Slackware Compared to Linux?

Linux, as distributed by the many good people who work on it, is actually quite a limited piece of
software. Essentially, it’s the three-disk set beginning with a that make up the true core of the operating
system.

The Slackware distribution of Linux builds on this core with utilities, programming libraries, and ports
of other UNIX and X Window programs, under a unified whole. Many of the setup utilities on the CD-
ROMs, for example, are unique to the Slackware distribution of Linux. These things make the
Slackware distribution unique.

Differences between This Book and the First Edition

The first edition of this book sold phenomenally well—much better, quite frankly, than we anticipated.
It quickly spawned a group of Linux wannabes who really didn’t know the operating system but could
license Linux from another source and pawn it off as an authentic guide to Linux.

But this sort of approach, quite honestly, isn’t in the true spirit of Linux. As a whole, Linux owes a lot to
the many volunteers who make it work and help others use it. We’ve bought into this ethos; Slackware
Linux is available at no charge via the Internet. And, as a bonus, we’ve managed to keep the cost of this
book affordable (less than other commercial implementations of Linux) while at the same time offering
two CD-ROMs containing a slew of Linux software. The second CD-ROM contains the work of many
other software programmers, and if you find their work to be useful in your work, we strongly
recommend that you send along a contribution to reward their efforts.

So, what else distinguishes this book from the first and second editions? Well, Linux has changed, and
so has the Slackware implementation. On a user level, you’ll notice that the operating system is
generally more stable, and the X Window implementation is easier to configure and much less cranky to
tweak. More tools have been added to the core Slackware Linux distribution on the first CD-ROM.
Programmers will appreciate the new data formats that cut down on the size of executable files and the
new tools that allow Motif programs to be run without an actual OSF/Motif license from the Open
Software Foundation. Several security tools have been added, as well as an updated version on XFree86.

In short, if you’ve been a Linux user, you’ll have reasons both to upgrade your version of Linux and to
review the new information presented in this book. Linux is a dynamic, ever-changing operating system,
and it’s always fun to keep track of the latest and greatest.

The Free Software Foundation

Many of the utilities and programs contained in this distribution of Linux (and most other Linux
distributions) come from the Free Software Foundation (FSF) or are licensed under the general terms of

the Free Software Foundation. Because so many of the utilities are connected with the FSF, we urge you
to check out the group (via its many Usenet newsgroups) and to read through its general license, which
is contained along with its programs (for example, emacs gives you an option to read through the
general license). For more information about the Free Software Foundation, write:

Free Software Foundation
675 Massachusetts Avenue
Cambridge, MA 02139
(617) 876-3296 (voice)
(617) 492-9057 (fax)

gnu@prep.ai.mit.edu

Resources on the CD-ROMs

We’ve included two CD-ROMs with this book. A full implementation of the Linux operating system can
be found on the first CD-ROM. This includes a rather robust set of UNIX utilities and a complete
implementation of the X Window System. In addition, we’ve included a set of documents, called the
Linux HOW-TOS, in the docs directory. These are text files that examine a portion of the Linux
operating system in great detail. Occasionally, we will refer to these documents in the course of this
book.

The second CD-ROM contains software, software, software. Most of the software contained on the
second CD-ROM is already compiled for Slackware Linux, but when appropriate we’ve included source
code so you can compile the software for use on your own system. We present the software “as is” (that
is, directly from the authors via the Internet), and there’s no way we can support it. Almost all of the
software has files that contain information about contacting the authors, and that’s where you should
turn if you have problems with the software. Also, some of the authors ask for a contribution if you find
their software useful, and we strongly urge you to send one.

Conventions Used in the Book

To make this book more usable, we’ve incorporated a few formatting conventions that should make it
easier for you to find what you need. These include the following icons:

NOTE: The Note icon indicates something that you should pay special attention to.

WARNING: The Warning icon warns you about actions that could be hazardous to the health of
your computer or your Linux installation.

ON THE CD-ROMS: The CD-ROMs icon refers to items found on the accompanying CD-
ROMs, such as the aforementioned HOWTO files.

In addition, we’ve used some specific formatting commands in the text:

• Bold type refers to a command
• Italic type refers to a new concept
• Monospaced type refers to a command line entered directly at a prompt and ending with the
Enter key, as in the following:

 gilbert:/ elvis

How to Reach the Authors

You’re free to drop us a line via electronic mail at: reichard@mr.net.

However, we must warn you that we promise no further guidance to Linux than what’s printed in this
book. Among the three of us, we receive a lot of electronic mail, and at times it’s impossible to keep up
with it. Please don’t assume that this electronic-mail address will bring you instant help.

Table of Contents

--> To access the contents, click the chapter and section titles.

Linux Configuration and Installation new buy it
(Imprint: M & T Books)
(Publisher: IDG Books Worldwide, Inc.)
Authors: Patrick Volkerding, Kevin Reichard, Eric Foster
ISBN: 1558285660

Introduction: Welcome to Linux
About the CD-ROMs

Section I—Linux Installation and Configuration

Chapter 1—Linux and PC Hardware

Preparing for Linux
Preparing Your PC for Linux
The Core Components

Bus
Processor
RAM
Graphics Card

Controllers
Hard-Drive Controllers
SCSI Controllers
Floppy Drive
Tape Drives
CD-ROM
Removable Drives
I/O Controllers

Outward Connectivity
Network Cards
Multiport Controllers
Modems
ISDN Cards
ATM Network Adapters
Frame Relay Cards

Other Devices
Sound Boards

http://barnesandnoble.bfast.com/booklink/click?sourceid=216514&ISBN=1558285660
http://barnesandnoble.bfast.com/booklink/click?sourceid=216514&ISBN=1558285660

Mouse and Joystick
Printers
Scanners
Video-Capture Boards
Uninterruptible Power Systems
Data-Acquisition Equipment
Miscellaneous

Dealing with Some Specific Systems
Compaq Deskpro XL

Linux on Laptops
Other Specific Models
PCMCIA and Laptops

Learning About PC Hardware
Summary

Chapter 2—Installing Linux

Before You Install Linux
Creating Boot and Root Floppies

Choosing Bootdisk and Rootdisk Images
Preparing Your Hard Drive for Linux

Using FIPS to Divide Your Hard Drive
Using DOS Utilities to Divide Your Hard Drive
Using the DOS FDISK Utility
FDISK and OS/2

Booting Linux with the Bootdisk
Creating the Main Linux Partition

Installing Linux from the Setup Program
Setting up the Swap Space
Selecting the Target for Linux
Selecting the Source for Linux
Choosing the Disk Sets to Install
Configuring the Installed Software

Other Installation Methods
Installing from Hard Drive
Installing from 3.25-Inch Floppy Disks
Installing from 5.25-Inch Floppy Disks
Installing from Tape

Recompiling a Kernel
Upgrading from a Previous Version of Linux

Booting the System
Adding Users
Using Kernel Modules
Looking for Help

Shutting Linux Down
What to Do if Things Go Wrong
Other Configuration Procedures

Setting Up a Printer
Setting Up a Sound Card
Working with PCMCIA Devices
Working with a UPS
Adaptive Technologies and Linux
Using Linux with Ham Radio
Making Linux Work with Your Language

Summary

Chapter 3—Installing and Configuring XFree86

The X Window System
X on the Network
The Window Manager

X on Linux
How XFree86 Works

Setting Up the XF86Config File
Hardware, Hardware, Hardware
Laptops and X

Automating the Configuration Process
Setting Up Paths in the Configuration File
Configuring the ServerFlags Section
Configuring the Keyboard Section
Configuring the Pointer Section
Configuring the Monitor Section
Configuring the Graphics Card Section

Combining the Graphics Card with the Monitor to Make a Working X Setup
Virtual Screens

Running the Xf86config Program
Testing Your Configuration

Starting X
VGA to the Rescue
Using the Default Super VGA

Making the Most of X
Setting Up Your X Account
Configuring the Xterm Program
Controlling the Size of the Xterm Window
Copying and Pasting between xterm Windows

Starting X Automatically at Boot-Up and Creating an X Login Screen
UNIX Run-Levels
User Accounts Under Xdm

Starting X Automatically on Login
The X Font Server

Setting a Screen Background Image
The Fvwm Window Manager

Configuring Fvwm
Configuring Fonts and Colors
Testing Your Fvwm Configuration
Placing Icons
Configuring the Good Stuff
Putting It All Together
Exiting X from Fvwm

Summary

Section II—Using Linux

Chapter 4—Basic Linux Tools

Linux Tools
The Linux Filesystem
File Types

Ordinary Files
Directories
Links
Special Device Files

How Linux Organizes Files and Directories
Moving Between Directories with Cd

File Permissions and Linux
Changing Permissions
Changing Ownerships and Permissions

Dealing with Files and Directories
Listing Files and Directories with Ls and Dir
Wildcards

Creating Directories with Mkdir
Using Cat
Other Ways to View a File
Finding the Magic Number with File
Copying Files with Cp
Moving and Renaming Files with Mv
Removing Files with Rm
Viewing Online-Manual Pages with Man
Finding Files
Linking Files
Viewing a File with Cal

Virtual Terminals
Linux and Passwords

Changing Your Password with Passwd
Linux Shells

Your Environment
Background Commands and Multitasking
Processes
Standard Input and Output
Command History
Minimal Completion
Aliases
Using Help in Bash

The Elvis/Vi Text Editor
Using the Elvis Text Editor
Creating a Text File
More on Elvis

Printing Files
Summary

Chapter 5—Linux Applications

A Wealth of Features
Using Emacs

Emacs and Commands
The Many Modes of Emacs
Creating and Editing Files
A Basic Emacs Tutorial

Xedit
Textedit

file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch04/234-236.html#Heading26
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch04/234-236.html#Heading27
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch04/234-236.html#Heading28
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch04/237-240.html#Heading29
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch04/237-240.html#Heading30
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch04/237-240.html#Heading31
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch04/240-243.html#Heading32
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch04/240-243.html#Heading33
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch04/240-243.html#Heading34
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch04/243-246.html#Heading35
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch04/243-246.html#Heading36
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch04/243-246.html#Heading37
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch04/247-249.html#Heading38
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch04/247-249.html#Heading39
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch04/249-253.html#Heading40
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch04/249-253.html#Heading41
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch04/253-256.html#Heading42
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch04/253-256.html#Heading43
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch04/253-256.html#Heading44
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch04/256-256.html#Heading45
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch05/257-260.html#Heading1
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch05/257-260.html#Heading2
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch05/257-260.html#Heading3
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch05/260-265.html#Heading4
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch05/260-265.html#Heading5
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch05/260-265.html#Heading6
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch05/265-268.html#Heading7
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch05/270-273.html#Heading8
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch05/273-275.html#Heading9

Other Text-Editing Tools
Text-Processing Tools

Groff: The Traditional Standard
Creating Man Pages with Groff
Using TeX
Using Texinfo
Using Sed

Printing with Ghostscript Under Linux
Using Ghostscript
Font Tools

File Managers
Midnight Commander
Xfm
Tkdesk

Compressing and ArchivingYour Files
Using Gzip
Using Gunzip
Using Zip
Using Tar

Commands Specific to the PC Architecture: MTools
Using Mdir to View the Contents of a DOS Directory
Using Mcd to Change Directories
Using Mcopy to Copy Files
Using Mren to Rename DOS Files
Using Mdel to Delete DOS Files
Using Mtype to View a DOS File
Using Mmd to Create a DOS Directory
Using Mrd to Remove a DOS Directory
Using Mread to Copy a DOS File to Linux
Using Mwrite to Write a UNIX File to DOS
Using Mformat to Format a Diskette
Using Mlabel to Designate a Volume Label
Using Mattrib to Change the DOS File Attributes

Graphics Tools
Bitmap
Xfig
Xfractint
Xpaint

file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch05/273-275.html#Heading10
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch05/273-275.html#Heading11
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch05/273-275.html#Heading12
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch05/276-279.html#Heading13
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch05/279-284.html#Heading14
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch05/279-284.html#Heading15
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch05/279-284.html#Heading16
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch05/284-287.html#Heading17
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch05/284-287.html#Heading18
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch05/290-294.html#Heading19
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch05/290-294.html#Heading20
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch05/290-294.html#Heading21
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch05/294-297.html#Heading22
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch05/297-300.html#Heading23
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch05/297-300.html#Heading24
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch05/300-303.html#Heading25
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch05/300-303.html#Heading26
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch05/300-303.html#Heading27
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch05/303-306.html#Heading28
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch05/313-317.html#Heading29
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch05/313-317.html#Heading30
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch05/313-317.html#Heading31
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch05/313-317.html#Heading32
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch05/313-317.html#Heading33
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch05/313-317.html#Heading34
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch05/313-317.html#Heading35
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch05/313-317.html#Heading36
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch05/313-317.html#Heading37
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch05/313-317.html#Heading38
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch05/317-321.html#Heading39
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch05/317-321.html#Heading40
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch05/317-321.html#Heading41
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch05/317-321.html#Heading42
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch05/317-321.html#Heading43
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch05/317-321.html#Heading44
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch05/321-326.html#Heading45
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch05/321-326.html#Heading46
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch05/321-326.html#Heading47

Xv
The JPEG Utilities
Emulating Microsoft Windows under Linux
Windows 95 Window Manager

Some Math Tools
The Bc Command
Dc
Calculator

Games
Terminal Games

Miscellaneous Tools
Clocks
Xdpyinfo and Xev
Xlock
Xmag
Xman
Sc and Xspread

Emulators
Emulating DOS under Linux
X Window Games

Summary

Chapter 6—Basic Linux System Administration

System-Administration Tools
Using the Passwd File

Deleting Accounts
Managing Groups

Logging in as Su
More on the Messages File

Boot Options
Creating a Bootdisk
Recovery Packages
What to Do If You Forget Your Password
Using LILO
What is LILO?

Scheduling Events
The Nice Command
The At Command
The Batch Command

file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch05/321-326.html#Heading48
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch05/321-326.html#Heading49
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch05/322-337.html#Heading50
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch05/322-337.html#Heading51
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch05/322-337.html#Heading52
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch05/322-337.html#Heading53
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch05/322-337.html#Heading54
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch05/322-337.html#Heading55
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch05/322-337.html#Heading56
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch05/322-337.html#Heading57
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch05/326-329.html#Heading58
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch05/326-329.html#Heading59
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch05/326-329.html#Heading60
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch05/326-329.html#Heading61
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch05/326-329.html#Heading62
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch05/329-322.html#Heading63
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch05/329-322.html#Heading64
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch05/329-322.html#Heading65
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch05/329-322.html#Heading66
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch05/341-344.html#Heading67
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch05/341-344.html#Heading68
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch06/345-348.html#Heading1
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch06/345-348.html#Heading2
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch06/345-348.html#Heading3
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch06/348-351.html#Heading4
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch06/348-351.html#Heading5
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch06/348-351.html#Heading6
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch06/352-355.html#Heading7
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch06/355-359.html#Heading8
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch06/355-359.html#Heading9
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch06/355-359.html#Heading10
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch06/359-362.html#Heading11
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch06/359-362.html#Heading12
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch06/359-362.html#Heading13
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch06/362-364.html#Heading14
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch06/362-364.html#Heading15
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch06/362-364.html#Heading16
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch06/362-364.html#Heading17

The Cron Command
More on Multitasking

More on the Foreground and Background
Swap Space and Performance

I’m Free!
Mounting Filesystems
Sending a Message of the Day
Summary

Section III—Linux Communications and Networking

Chapter 7—Linux and Telecommunications

Expanding Your Reach via Modem
Seyon: Telecommunications from Linux
Using Minicom and Xminicom
Using Rzsz
Other Linux Telecommunications Tools
Summary

Chapter 8—Linux Networking

Networking and Linux
TCP/IP Basics

Setting up TCP/IP Information
Summary

Chapter 9—Linux and the Internet
Getting on the Worldwide Network
Finding a Window to the Internet
Linux’s SLIP and PPP Tools
Linux’s PPP Tools

Setting up a PPP Connection
Internet Tools

Using Electronic Mail
Using a Web Browser

Communications with the UUCP Commands
A UUCP Primer

Using UUCP
Potential Problems with the Uucp Command
What Can Go Wrong?
Free Software and FTP
Using FTP

file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch06/364-368.html#Heading18
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch06/368-370.html#Heading19
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch06/371-373.html#Heading20
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch06/373-377.html#Heading21
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch06/373-377.html#Heading22
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch06/377-380.html#Heading23
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch06/377-380.html#Heading24
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch06/377-380.html#Heading25
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch07/381-386.html
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch07/381-386.html#Heading1
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch07/381-386.html#Heading2
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch07/381-386.html#Heading3
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch07/389-392.html#Heading4
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch07/392-394.html#Heading5
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch07/392-394.html#Heading6
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch07/392-394.html#Heading7

What do I Do with the File?
Other Networking Commands
Slurping the News

Summary

Section IV—Linux Programming

Chapter 10—Programming in Linux

Programming under Linux
The Linux C Compiler: GNU CC

C Programming
The Cc Command
Using the Cc Command
ELF Files
Linux Shared Libraries
Programming with X
Using LessTif
XForms

Programmer’s Tools
Building Programs with Make
X Window Tools
Parsers and Lexers
Other Tools

Other Programming Languages
Java the Hut

Linux Scripting Languages
Tcl
Perl
Gawk

Summary

Appendix A
Appendix B
Index

-->

Table of Contents

About the CD-ROMs

There are two CD-ROMs accompanying this book. These disks are formatted under ISO-9660 standards,
with Rock Ridge extensions. You can read the contents from both PCs and UNIX workstations.
However, long UNIX filenames

The second CD-ROM contains useful source code (and in some cases, precompiled binaries) for Linux/
UNIX applications and utilities mentioned in the book, as well as selected archives from two of the most
popular Linux FTP sites.

communications

Communications utilities: diald (a daemon that provides a PPP connection on demand) and slirp (a
SLIP/ PPP emulator that runs in a UNIX shell account)

email

Email-related utilities: MH (a mail-handling system), EXMH (an X front-end to MH), procmail (a local
mail delivery/filtering utility), tkMail (a mail client built with the Tk toolkit), uudeview (a smart decoder
for extracting binaries from news or email that are coded in any of the popular encoding formats), and
xfmail (an XForms-based mail reader for X).

experimental

Nonsupported projects still in development: WINE (Windows Emulator for X, capable of running some
Windows 3.1 programs directly under Linux) and NTFS (a kernel patch to provide read-only access to
Windows NT partitions).

graphics

Graphics programs: POV-ray for Linux (a ray-tracing program).

multimedia

Multimedia and graphics programs: ImageMagick (an image-processing package), gimp (an image-
editing package), mpeg_play (plays MPEG animations under X or on the Linux console), pixmap (a

pixmap [xpm] editor), xpcd (a PhotoCD viewer), and xpdf (a viewer for PDF files, also known as
Acrobat files, from the name of Adobe’s PDF software).

networking

Networking applications: NIST (network time synchronizer), apache (World Wide Web [HTTP] server),
ipfwadm (utility for setting up firewalls or IP masquerading under Linux), knews (threaded newsreader
with an X interface), samba (a server for filesystem/printer access from Windows 95, NT, or other
operating systems using SMB), surfit (a web browser written in Tcl/ Tk/TclX), tkNet (a network
configuration utility written in Tcl/ Tk), tkWWW (a Tk interface to the World Wide Web, allowing
editing of HTML files), and wn (an easy-to-configure WWW server).

office

General usage items: OFFiX (drag-and-drop tools for the X desktop), TkDesk (a filemanager written in
Tcl/Tk), addressbook (an addressbook utility), cbb (checkbook balancer), groupkit (a library for building
real-time groupware applications, such as drawing programs or editors that multiple users can use
simultaneously), ical (calendar/date book), nedit (Motif-based editor for X), and teapot (spreadsheet
program).

programming

Programming tools and utilities: LessTif (an X programming library compatible with Motif 1.2), Mesa
(freely distributable version of OpenGL), java (the Java Developer’s Toolkit for Linux), perl-5.002
(source code for the Perl language [binaries are included with Slackware on the first disk] as well as
CGI—a perl add-on used for WWW programming), perl-tk (a perl extension to use the Tk toolkit),
wxWindows (a C++ framework for developing multiplatform, graphical applications from the same
body of C++ code), and xforms (a graphical user interface toolkit for X).

scientific

High-end applications: GRASS (a complex system developed by the Army for managing land use.

sunsite

Hundreds of programs from the sunsite.unc.edu Linux FTP site. This directory in turn contains four
subdirectories: apps (applications like communications tools, text editors, math programs, TeX tools,
and video programs), devel (developer tools), system (a host of system-level programs and utilities), and
X11 (X Window tools and programs).

sysadmin

System-administration tools: xwatch (a program to keep an eye on system logs under X).

tsx-11

Hundreds of programs from the tsx-11.mit.edu Linux FTP site. This directory in turn contains
subdirectories: doc (the contents of the Linux Documentation Project, as well as other relevant
documents) and packages. which contain programs files for the likes of Epoch, Modula-2, Modula-3,
Scilab, Eiffel, DSP processing, sound management, graphics, and other development tools and utility
programs.

window-managers

Alternative window managers: bowman (a window manager for X with a NextStep look) and fvwm95 (a
window manager for X with a Windows 95 look).

Table of Contents

-->

Previous Table of Contents Next

Section I
Linux Installation and Configuration

Welcome to your brave new journey with the Linux operating system! This section covers the
installation and configuration of Linux.

Chapter 1 is an overview of the Linux operating system It explains the components and other facts you’ll
need to know about Linux before installation. If you’re not a past or present Linux user, you’ll want to
read this chapter carefully.

Chapter 2 guides you through a Linux installation from beginning to end. In many ways, installing
Linux is one of the more daunting tasks you’ll face; Linux runs rather smoothly once it’s installed and
configured correctly. Again, this is a chapter you’ll want to follow very closely.

Chapter 3 covers the installation, configuration, and basic usage of XFree86, the implementation of the
X Window System designed for PC-based Unices.

Chapter 1
Linux and PC Hardware

This chapter covers:

• The hardware needs of Linux
• PC configuration requirements
• Processor needs
• RAM needs
• Supported hard drives
• Supported SCSI cards
• Supported network cards
• Supported mice
• Supported CD-ROM drives
• Linux and laptops

Preparing for Linux

An ounce of preparation is worth a pound of cure, goes the old (and clichéd, some would say) saying.

However, there’s a kernel of truth to the old saying—particularly when it comes to installing and
configuring Linux.

Before you rush into a half-baked and ill-conceived Linux installation, there are a few things you should
do, mostly relating to your PC’s setup and configuration. In this chapter, we’ll tell you if your PC is
capable of efficiently running Linux and point out some potential problem areas. This should be handy if
you’re thinking about installing Linux on an existing machine or if you’re considering the purchase of a
new computer (laptop or desktop) for the express purpose of running Linux. In the next chapter, we’ll
run through a typical Linux installation.

NOTE: We’re PC-centric in our attitudes toward Linux. Linux was developed for use on PCs,
and the vast majority of Linux users work on PCs. The version of Linux on the accompanying CD-
ROM is designed for a PC platform.

However, there have been attempts to move Linux to non-PC hardware platforms—some of
which have been quite successful. Appendix A lists the Linux ports to other platforms and ways
to get more information about them.

Preparing Your PC for Linux

Like all PC-based Unices (including SCO UNIX and BSD), Linux is pretty fussy about the hardware it
runs on. By fussy, we mean that Linux does a lot of interacting directly with PC hardware. DOS, by
comparison, is a very forgiving operating system, pretty much able to run and function on almost any
PC. It will ignore some small flaws in the PC architecture.

Linux, however, will expose those flaws. As a PC UNIX, Linux interacts very closely with the PC
hardware, writing directly to the various PC components. If there’s a problem with your PC—however
small—Linux will find it. The problem is somewhat lessened if you’re using brand-name equipment;
remember (as mentioned in the Introduction) that Linux is a product of a virtual army of volunteers, and
they’re like everyone else when it comes to computer equipment—if half a million people bought a
particular PC model from Compaq, chances are good that a Linux developer (or two) will be among the
half-million buyers. This is how hardware gets supported under Linux; the most devoted users make
sure Linux works well on their systems. It’s certain that someone out there will have experience with
Linux on popular hardware—it’s less likely that someone out there will have experience on your
spanking-new computer from NoNameClone Corp. in the strip mall on the outskirts of town.

If you do buy a PC from NoNameClone Corp., this puts an additional burden on you, as you’ll need to
know more about your PC than you ever thought. The ideal situation, of course, would be if you didn’t
actually own a PC yet and you were putting one together expressly to run Linux. (This is the way we

approached it, in one instance.) A bad situation is if you bought a no-name clone from a local vendor
and had no idea about its components. The worst situation is if you bought a no-name clone and were a
UNIX workstation user, fairly ignorant of the quirks surrounding the PC architecture. A middling
situation is if you bought a clone from the likes of a CompUSA or Best Buy and had decent
documentation regarding the components.

Previous Table of Contents Next

-->

Previous Table of Contents Next

Because we don’t live in an ideal world, we’ll assume you know little about your PC and need a primer
on its components. We’ll run down both the minimal and ideal Linux PC configurations and then give a
compatibility list.

NOTE: When buying a PC, the temptation is to spend as little as possible or to try to squeeze by
with lesser or inferior components. We understand the need to live on a budget—we certainly
don’t have thousands of dollars worth of computer equipment sitting around our home offices.
But there comes a point when you need to make the necessary investment if you want to run
Linux effectively. Too often we see people complaining in the Usenet newsgroups that Linux
doesn’t run properly on their PCs or that XFree86 won’t run in higher resolutions on their
unsupported graphics cards. You can avoid this by either taking an inventory of your PC before
installing Linux (which may mean actually taking off the cover and physically poking through the
components) or making sure a new PC meets the compatibility guidelines. Either action is a real
pain, we admit; but by spending some time up front, you’ll avoid many problems later in the
installation and configuration process. You may be pleased with yourself after saving some cash
buying a new graphics card from NoNameClone Corp., but in the end you’re better off paying a
little more for hardware that’s been thoroughly tested by the huge number of existing Linux users.

Table 1.1 lists the minimum and ideal configuration guidelines for Linux.

Table 1.1Linux PC Configuration Guidelines

PC Component Minimum Ideal

Processor Intel 80386 or equivalent Pentium is ideal (power,
power, power!); i486 works
fine, as do Intel clones

RAM 4MB (8MB for running X Window) 16MB

Graphics card VGA graphics SVGA graphics; card
explicitly supported by
XFree86

Hard drive 125MB 500MB or more

Bus Anything but MCA Anything but MCA

CD-ROM Double-speed drive Quadruple-speed drive

Mouse Microsoft, Logitech, or compatible Microsoft, Logitech, or
compatible

Network card None Supported model (if
networking)

NOTE: If you’re not sure about your particular hardware setup and Linux compatibility, check
out the Hardware Compatibility-HOWTO (see Appendix A for details).

WARNING: Watch out for hardware advertised as “plug-and-play.” Most of this hardware is
extremely difficult to use with Linux, although it can be done by first booting DOS and then
“warm booting” into Linux with Loadbin. Some experimental kernel patches and a plug-and-play
configuration tool are included in Slackware, but in general, if you can avoid plug-and-play
devices (at least until Linux support improves) you’ll be better off.

The Core Components

In the rest of this chapter, we’ll run down the various PC components and warn you about any potential
downfalls if you want to use Linux. In addition, you’ll want to check out Chapter 3 for a discussion of
supported graphics cards—support that becomes vitally important if you’re looking to run XFree86 (the
implementation of the X Window System) with Linux.

In this section, we’ll begin with a rundown of the basic components of your computer: bus, processor,
and so on.

Bus

Linux runs on all the major bus architectures—ISA, VLB, PCI, EISA—except for the nonstandard
Micro Channel Architecture, found on most IBM PS/2 models. (Not every IBM PC features an MCA
bus, luckily; the ValuePoint and PS/1 models feature an industry-standard ISA bus.)

Processor

Linux needs at least an Intel 80386-based processor in order to run efficiently. Don’t bother with a
80286-based PC. If you’ve got an older PC sitting in the closet and you think it might be neat to recycle
by using Linux, leave it there, donate it to your local charity, or give it to the kids to bang on. It won’t be
useful in your Linux adventure.

Basically, any PC built around the Intel 80386 or better (including the i486, and Pentium, and chips
from AMD and Cyrix) is capable of running Linux. If there is no math coprocessor (which may be an

issue in older 80386-based PCs), Linux has built-in FPU emulation.

A Few CPU Problems

There are a few reported instances of Linux conflicting with a CPU or math coprocessor:

• Some AMD 486DX CPUs may hang in very specific situations, a problem that’s not unique to
Linux. If this happens to you, contact your PC vendor and get a replacement chip.
• Some older math coprocessors from Cyrix, IIT, and ULSI (the Math*Co series) have problems
with the FSAVE and FRSTOR instructions, which may cause problems with Linux. Again, you
can get a replacement chip from your PC vendor.

Previous Table of Contents Next

-->

Previous Table of Contents Next

RAM

Random-access memory is one of those sticky issues when it comes to the PC. If you’re a workstation
user, you’re probably used to working with scads of RAM. (Then again, most workstation users have
someone else footing the bill, as the costs of that RAM can add up rather quickly.) In theory, it would be
great to work with scads of RAM on a PC. Linux, like any 32-bit operating system, loves to work with
as much RAM as possible.

In the real world, however, there are bills to pay, and the reality is that RAM is one of the most
expensive parts of a PC, both upon initial purchase and if you ever want to upgrade. If you’re a
workstation user, you’ll want to read through the following section, which explains RAM and the PC; if
you’re a PC user and are comfortable in your knowledge of RAM, you can skip to the following section.

The PC and RAM

If you buy a PC these days and aren’t too attentive to details, you can easily end up with a PC that has 8
megabytes (MB) of RAM, as this is a popular figure with packages offered by the likes of CompUSA,
Best Buy, and Computer City. In this day and age, 8MB isn’t a whole lot of memory, even when running
Microsoft Windows, MS-DOS, and memory-hungry applications. It becomes even more confining when
running Linux.

WARNING: This selection from the Slackware FAQ should illustrate problems associated with
low memory:

Q: I can’t get anything to work at all! What’s the deal?

A: If you seem to suffer catastrophic failure (!), then check the file FILE_LIST on ftp.cdrom.
com in /pub/linux/slackware against the contents of your disks and make sure you’re not missing
any files.

Also, I’ve noticed that most of the reports of kernel panics and system hangs have come from
people with 4MB. If you’re running into these types of problems I’d suggest forking over the $$$
for 4 more megs. I have 8 MB of RAM and never have crashes. (Well, only when I really push
my luck.) If you don’t want to do that, then go through your /etc/rc.d/rc.* files and get rid of any
daemons you don’t use, like cron, lpd, or selection.

If you’ve got 4MB and you’re getting “virtual memory exceeded in new” warnings, make sure

file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch01/ftp.cdrom.com
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch01/ftp.cdrom.com

you set up and activate a swap partition before running setup. If you’re really hard up on memory,
you can boot a rootdisk using editroot instead of one of the usual boot kernels. This will mount
the floppy in the root drive, and you’ll have to install from the other drive or from the hard drive.
You will also not be able to create any kind of boot disk, so you’ll have to install LILO and take
your chances. I suggest using this approach only if a swapfile will not work.

Linux will boot and run on a PC with 4MB of RAM. However, you’ll be running into memory
constraints very quickly, and chances are that you won’t be able to run the X Window System at all. In
fact, 8MB is barely enough to run X and Linux. We used the combo on an 8MB machine, and the results
weren’t too encouraging; in fact, we were strongly encouraged to ramp up to 16MB of RAM right away.

This is why we recommend you upgrade and buy as much RAM as you can afford. Before you do so,
you should know how today’s PCs handle RAM and how you can buy it.

Almost every new PC supports Single Inline Memory Modules, or SIMMs. Additionally, almost every
new PC has four SIMM slots on the motherboard, and most SIMMs are sold in multiples of two or
four—1MB, 2MB, 4MB, or 8MB. The less memory on a SIMM, the cheaper the SIMM.

If you bought a PC with only 4MB of RAM, you probably ran into a situation where there were four
1MB SIMMs installed in the four motherboard slots. When you upgrade your PC’s RAM, these 1MB
SIMMs will be relatively worthless, unless you bought a PC from a vendor that allows you to trade in
old RAM when buying new RAM. (The trade-in price depends on the vendor. Typically, you’ll get a
credit for half the price of the old RAM when trading it in, provided you bought a PC from a vendor that
assembles its own PCs. We’ve dealt with some cloners that give you full credit on the old RAM when
trading it in, provided the PC was bought within the last year.) The same would be true if you bought a
system with 8MB of RAM, and the SIMM slots were filled with 2MB SIMMs.

The best-case scenario is if you have a PC and only half of the SIMM slots are filled; in our case, we
lucked into purchasing an 8MB PC that had 4MB SIMMs. (Contrary to popular belief, not every PC
needs all the SIMM slots filled in order to function properly.) In this case, we needed to buy two more
4MB SIMMs to stick in the empty slots, bringing the total to 16MB.

NOTE: Depending on the motherboard configuration, you may have to play with the SIMMs
and their order in the slots. In the case of the 8MB PC with two more SIMMS added, we needed
to stagger the SIMMs (old SIMM, new SIMM, old SIMM, new SIMM) before the system would
recognize all 16MB of RAM. Normally this isn’t something that’s documented, so you might
need to call the customer-support line for your PC manufacturer for advice when adding new
SIMMs.

NOTE: EDO RAM is all the rage these days on new PCs. Basically, EDO RAM is faster than
conventional RAM, but like everything else in the computer world, you pay a little extra for the
privilege of speed.

Therefore, the issue becomes whether it’s worth the extra money to buy EDO RAM instead of
conventional RAM (provided, of course, that the base price of a PC doesn’t already feature EDO
RAM; several large computer companies, such as Dell, have already started featuring EDO RAM
in all of their configurations). Our experience is that it’s worth the extra money. We’ve not run
into a situation where the price of upgrading to EDO was too exorbitant, and the increase in
performance was worth the slight increase in price.

Slackware Linux doesn’t care whether you’re using EDO RAM or conventional RAM.

Previous Table of Contents Next

-->

Previous Table of Contents Next

Graphics Card

Dealing with a graphics card has been one of the most problematic areas of Linux—or rather, of
XFree86, which serves as the X Window System graphical interface to Linux. XFree86 deals directly
with the graphics card and must know everything about the card in a configuration file (such as the
amount of RAM it has, the chipset it features, and what modes it supports), putting more stress on you
than the average software. Chapter 3 details how to configure XFree86, and in almost every respect this
will be the most daunting task you will face as a budding Linux user.

Controllers

If you’re a DOS/Windows user, you’re probably not too tuned into what sort of controller your computer
features, because DOS and Windows are pretty tolerant of almost any PC controller.

This isn’t the case with Linux, which works directly with a PC controller and thus needs to really
support it. In this next section, we’ll run down the controllers supported by Slackware Linux. There’s a
domino effect to the controller compatibility: if Linux doesn’t recognize the controller, it won’t
recognize anything connected to the controller. And most of us have many goodies connected to the
controller, including hard drives, CD-ROM drives, and scanners.

Hard-Drive Controllers

Unlike most PC-based Unices, Linux isn’t too fussy about the hard disk or hard disks it supports;
basically, if a hard disk is supported by a PC’s BIOS, it will work fine under Linux. This goes for IDE,
EIDE, MFM, RLL, ESDI (with controllers that emulate the ST-506 interface, that is), and most SCSI
interfaces. In fact, the following Enhanced IDE (EIDE) interfaces are explicitly supported, even on
systems with up to two IDE interfaces and up to four hard drives and/or CD-ROM drives:

• CMD-640
• DTC 2278D
• Intel Triton (82371FB) IDE (with busmaster DMA)
• FGI/Holtek HT-6560B
• RZ1000

NOTE: If you’re using a hard disk with an MFM, ESDI, or RLL controller, you’ll need to use
the ext2f file system format when installing Linux.

Regarding how large a hard drive you’ll need—as always, the bigger the better. A full installation of
Linux takes up a little less than 275MB, but you can do quite well in 100MB (40MB if you don’t install
the X Window System) if you’re careful about what you install.

NOTE: The price of hard disks has been falling rapidly, so many people will be able to afford 1-
gigabyte drives. This is a good thing, of course; we recently noticed 1.2-gigabyte IDE drives
advertised for less than $300. (SCSI hard drives, of course, cost a little more.)

However, if you buy one of these mondo IDE hard drives, you’ll need to do a few things before
you install Linux on them—or rather, not do a few things. MS-DOS can’t handle such large
drives (in their infinite wisdom, the designers of MS-DOS placed a cylinder limit on DOS, and
newer hard drives exceed that 1023-cylinder limit), so most manufacturers, such as Conner and
Western Digital, ship disk-management software (such as Ontrack’s Disk Manager) that allow
MS-DOS to deal with large hard drives. Don’t install this software. A program like Disk Manager
is designed to work only with MS-DOS or a variant, not Linux or another operating system.

Instead, change your PC’s BIOS per the directions found in the hard-disk documentation. Then,
using the steps detailed in Chapter 2, use the DOS FDISK utility to partition the hard drive into
two smaller partitions that can be seen by both DOS and Linux.

However, there’s still a chance you could experience some problems. For example, the Hardware
Compatibility-HOWTO reports that some Conner CFP1060S drives may have problems with Linux
when using the ext2fs file system. The symptoms are inode errors during e2fsck and corrupt file
systems. Conner has released a firmware upgrade to fix this problem (call 1-800-4CONNER), but you’ll
need the microcode version (found on the drive label, 9WA1.6x) before Conner can help you.

In addition, certain Micropolis drives have problems with Adaptec and BusLogic cards. In these
situations, contact the drive manufacturers for firmware upgrades.

Previous Table of Contents Next

-->

Previous Table of Contents Next

SCSI Controllers

In theory, you shouldn’t have any problems with a SCSI card, because all SCSI cards are written to
exacting technical specifications.

If you believe that, we have some swampland in Florida for you.

The fact is that SCSI cards are not all alike, and you can’t assume that because you have a SCSI
controller on your PC, you’ll be able to use Linux with no sweat. Most low-end SCSI controllers were
designed to interface with a CD-ROM drive, not necessarily a hard drive or another SCSI device.

These SCSI controllers are explicitly supported under Linux: AMI Fast Disk VLB/EISA (BusLogic-
compatible); Adaptec AVA-1505/1515 (ISA) (Adaptec 152x-compatible); Adaptec AHA-1510/152x
(ISA) (AIC-6260/6360); Adaptec AHA-154x (ISA) (all models); Adaptec AHA-174x (EISA) (in
enhanced mode); Adaptec AHA-274x (EISA)/284x (VLB) (AIC-7770); Adaptec AHA-2940/3940 (PCI)
(AIC-7870); Always IN2000; BusLogic (ISA/EISA/VLB/PCI) (all models); DPT PM2001, PM2012A
(EATA-PIO); DPT Smartcache (EATA-DMA) (ISA/EISA/PCI) (all models); DTC 329x (EISA)
(Adaptec 154x-compatible); Future Domain TMC-16x0, TMC-3260 (PCI); Future Domain TMC-8xx,
TMC-950; Media Vision Pro Audio Spectrum 16 SCSI (ISA); NCR 5380 generic cards; NCR 53c400
(Trantor T130B) (use generic NCR 5380 SCSI support); NCR 53c406a (Acculogic ISApport/Media
Vision Premium 3D SCSI); NCR 53c7x0, 53c8x0 (PCI); Qlogic/Control Concepts SCSI/IDE (FAS408)
(ISA/VLB); Seagate ST-01/ST-02 (ISA); SoundBlaster 16 SCSI-2 (Adaptec 152x compatible) (ISA);
Trantor T128/T128F/T228 (ISA); UltraStor 14F (ISA), 24F (EISA), 34F (VLB); and Western Digital
WD7000 SCSI.

In addition, there are some SCSI controllers that can be used under Linux only after patches have been
added to an installed system. These controllers and the Internet locations of the patches are listed in
Table 1.2.

Table 1.2SCSI Controllers Needing Patches and the Internet Locations

Controller Internet address

AMD AM53C974, AM79C974 (PCI) (Compaq,
HP, Zeos onboard SCSI)

ftp://sunsite.unc.edu/pub/Linux/kernel/patches/scsi/
AM53C974-0.3.tgz

Adaptec ACB-40xx SCSI-MFM/RLL bridgeboard
ftp://sunsite.unc.edu/pub/Linux/kernel/patches/scsi/
adaptec-40XX.tar.gz

ftp://sunsite.unc.edu/pub/linux/kernel/patches/scsi/am53c974-0.3.tgz
ftp://sunsite.unc.edu/pub/linux/kernel/patches/scsi/am53c974-0.3.tgz
ftp://sunsite.unc.edu/pub/linux/kernel/patches/scsi/adaptec-40xx.tar.gz
ftp://sunsite.unc.edu/pub/linux/kernel/patches/scsi/adaptec-40xx.tar.gz

Always Technologies AL-500 ftp://sunsite.unc.edu/pub/Linux/kernel/patches/scsi/
al500-0.2.tar.gz

BusLogic (ISA/EISA/VLB/PCI) ftp://ftp.dandelion.com/BusLogic-1.0-beta.tar.gz

Iomega PC2/2B ftp://sunsite.unc.edu/pub/Linux/kernel/patches/scsi/
iomega_pc2-1.1.x.tar.gz

Qlogic (ISP1020) (PCI) ftp://sunsite.unc.edu/pub/Linux/kernel/patches/scsi/
isp1020-0.5.gz

Ricoh GSI-8 ftp://tsx-11.mit.edu/pub/linux/ALPHA/scsi/gsi8.tar.
gz

NOTE: Parallel-port SCSI adapters (popular among laptop users) and DTC boards (327x, 328x)
that are not Adaptec-compatible are not supported by Linux.

The SCSI device must support block sizes of 256, 512, or 1024 bytes. Other block sizes will not work.
(Use the MODE SELECT SCSI command to change the block size.)

NOTE: If you’re having trouble with SCSI and Linux, you’ll want to read the SCSI-HOWTO
on the CD-ROM. See Appendix A for more details on this resource.

However, be warned that you may need to play around with various SCSI cards, as you’ll see from this
excerpt from the Slackware FAQ:

Q: Why the $%#@! isn’t my UltraStor SCSI detected? It works under DOS!

A: Set the I/O address to 0x340 instead to 0x330.

For any hardware that doesn’t work, a good rule is to try playing around with the IRQ and I/O settings
on it to see what happens. If your system is up and running and you’re having problems with a CD-
ROM or tape or something like this, you can always look around for the driver source in /usr/src/linux/
drivers… really, it won’t bite! Often, the source contains important documentation, such as the default
IRQ settings for that type of device and the major number for the entry in /dev. Also, try other boot
kernels and see if that helps.

NOTE: A discussion of IRQs and interrupts can be found later in this chapter.

ftp://sunsite.unc.edu/pub/linux/kernel/patches/scsi/al500-0.2.tar.gz
ftp://sunsite.unc.edu/pub/linux/kernel/patches/scsi/al500-0.2.tar.gz
ftp://ftp.dandelion.com/buslogic-1.0-beta.tar.gz
ftp://sunsite.unc.edu/pub/linux/kernel/patches/scsi/iomega_pc2-1.1.x.tar.gz
ftp://sunsite.unc.edu/pub/linux/kernel/patches/scsi/iomega_pc2-1.1.x.tar.gz
ftp://sunsite.unc.edu/pub/linux/kernel/patches/scsi/isp1020-0.5.gz
ftp://sunsite.unc.edu/pub/linux/kernel/patches/scsi/isp1020-0.5.gz
ftp://tsx-11.mit.edu/pub/linux/alpha/scsi/gsi8.tar.gz
ftp://tsx-11.mit.edu/pub/linux/alpha/scsi/gsi8.tar.gz

Support for SCSI should extend to tape drives (as you’ll learn in the section entitled “Tape Drives,” later
in this chapter).

Floppy Drive

The Linux installation process assumes that you’ll be creating a bootdisk and a rootdisk for use on a
high-density drive. Because larger 1.2MB drives have all but disappeared from daily use, the
accompanying CD-ROM contains drivers only for the 1.44MB, 3.5-inch floppies that most computers
use for drive A:.

Tape Drives

Any tape drive that works from the SCSI connector, such as the QIC-20, should be fine under Linux (in
other words, if your SCSI card works, so should the tape drive). In these cases, you’ll need to make sure
that drives of both fixed and variable lengths have blocks smaller than the driver buffer length (set to
32k in the distribution sources). In addition, Linux works pretty well with other tape drives that are
connected via floppy controller, like QIC-117, QIC-40/80, and QIC-3010/3020 (QIC-WIDE) drives.

Other tape drives using the floppy controller, including Colorado FC-10/FC-20, Mountain Mach-2, and
Iomega Tape Controller II, should work, but you may have to grab a patch from ftp://sunsite.unc.edu/
pub/Linux/ kernel/tapes.

There are several unsupported tape drives, including Emerald and Tecmar QIC-02 tape controller cards,
drives that connect to the parallel port (like the Colorado Trakker), some high-speed tape controllers
(Colorado TC-15), the Irwin AX250L/Accutrak 250 (which are not QIC-80 compatible), the IBM
Internal Tape Backup Unit (which is not QIC-80 compatible), and the COREtape Light.

ON THE CD-ROMS: For further information, check out FTAPE-HOWTO.

Previous Table of Contents Next

ftp://sunsite.unc.edu/ pub/linux/ kernel/tapes
ftp://sunsite.unc.edu/ pub/linux/ kernel/tapes

-->

Previous Table of Contents Next

CD-ROM

You can use a SCSI-based CD-ROM for Linux, or you can use one of the many CD-ROM/sound board
combinations from the likes of Creative Labs. If you use a SCSI CD-ROM with a block size of 512 or
2048 bytes, you’ll be fine as long as Linux recognizes the SCSI card; Linux works directly with the
SCSI card and not necessarily directly with the CD-ROM. Pretty much any EIDE (ATAPI) CD-ROM
drive should work, and there’s explicit support for the following drives: Aztech CDA268, Orchid CDS-
3110, Okano/Wearnes CDD-110, Conrad TXC, GoldStar R420, LMS Philips CM 206, Mitsumi, Optics
Storage Dolphin 8000AT, Sanyo H94A, Sony CDU31A/CDU33A, Sony CDU-535/CDU-531, Teac CD-
55A SuperQuad, and the variety of drives that fall under the Creative Labs label and are used in Sound
Blaster Pro bundles—Matsushita/Panasonic, Creative Labs, Longshine, and Kotobuki.

You’ll need patches to use the following CD-ROM drives: LMS/Philips CM 205/225/202 (ftp://sunsite.
unc.edu/pub/Linux/kernel/ patches/cdrom/lmscd0.3d.tar.gz), Mitsumi FX001D/F (alternate drivers can
be found at ftp://ftp.gwdg.de//pub/linux/cdrom/drivers/mitsumi/mcdx-1.0a.tar.gz), NEC CDR-35D (ftp://
sunsite.unc.edu/pub/Linux/kernel /patches/cdrom/linux-neccdr35d.patch), and Sony SCSI multisession
CD-XA (ftp://tsx-11.mit.edu/pub/linux/patches/sony-multi-0.00.tar.gz).

WARNING: Again, watch out for “plug-and-play” soundcards—they don’t work well with
Linux. If you have an IDE/ATAPI CD-ROM drive connected to a plug-and-play soundcard and
Linux doesn’t detect it, try connecting it to the IDE connector on your motherboard (or I/O card)
instead. If that doesn’t work, try moving the jumpers on the back. (Remember the original settings
just in case.)

WARNING: We’ve received some complaints about the CD-ROM drives used in Gateway 2000
PCs, and there are have been reports in the trade press about some models that don’t do what’s
advertised, whether it be compatibility with another CD-ROM type or the speed. You may want
to do some research if you own a Gateway and have some problems with the CD-ROM drive.

Linux supports the ISO-9660 file system, the Rock Ridge Extensions, and the PhotoCD (XA) format.

NOTE: Not every Sound Blaster features a proprietary interface, as some versions are based on a
SCSI architecture. You’ll need to know what specific Sound Blaster board you’re using before

ftp://sunsite.unc.edu/pub/linux/kernel/ patches/cdrom/lmscd0.3d.tar.gz
ftp://sunsite.unc.edu/pub/linux/kernel/ patches/cdrom/lmscd0.3d.tar.gz
ftp://ftp.gwdg.de//pub/linux/cdrom/drivers/mitsumi/mcdx-1.0a.tar.gz
ftp://sunsite.unc.edu/pub/linux/kernel /patches/cdrom/linux-neccdr35d.patch
ftp://sunsite.unc.edu/pub/linux/kernel /patches/cdrom/linux-neccdr35d.patch
ftp://tsx-11.mit.edu/pub/linux/patches/sony-multi-0.00.tar.gz

you sit down for your Linux installation.

NOTE: Here’s another selection from the Slackware FAQ regarding Sound Blaster boards:

Q: I see my Sound Blaster/Panasonic CD-ROM detected at boot, but I can’t install from it or
mount it. What’s going on?

A: Try setting the drive’s ID to 0. This is expected by the install disks. There should be a jumper
on the back of the drive that sets this—just move it to the leftmost position.

Removable Drives

As is the case with all SCSI controllers, any removable drive connected to a working SCSI controller
should work, including optical (MO), WORM, floptical, Bernoulli, Zip, SyQuest, and other PD drives.

If you’re using a parallel-port Zip drive, you can grab a patch from ftp://gear.torque.net/pub/ and see if it
works.

Linux supports both 512 and 1024 bytes/sector disks.

I/O Controllers

Any standard serial/parallel/joystick/combo card can be used with Linux, including those sporting 8250,
16450, 16550, and 16550A UARTs. Cards that support nonstandard IRQs (such as an IRQ of 9) can be
used.

Outward Connectivity

UNIX was written with the express purpose of linking computers. Therefore, it’s no surprise that Linux
puts a premium on outward connectivity. This begins at a very basic level with network cards and
expands to other telephone-based connectivity tools, such as modems and ISDN cards. This section
covers all such devices.

Previous Table of Contents Next

ftp://gear.torque.net/pub/

-->

Previous Table of Contents Next

Network Cards

If you’re planning on using Linux on a network, you’ll need a networking card. (If you’re not planning
on using Linux on the network, you won’t need a card.) Other PC Unices require the presence of a
network card to run (even on a single-user installation), but Linux is not one of them.

The following Ethernet cards have been tested and are supported under Linux: 3Com 3C501, 3C503,
3C505, 3C507, 3C509/3C509B (ISA)/3C579 (EISA); AMD LANCE (79C960)/PCnet-ISA/PCI
(AT1500, HP J2405A, NE1500/NE2100); AT&T GIS WaveLAN; Allied Telesis AT1700; Ansel
Communications AC3200 EISA; Apricot Xen-II; Cabletron E21xx; DEC DE425 (EISA) / DE434/
DE435 (PCI); DEC DEPCA and EtherWORKS; HP PCLAN (27245 and 27xxx series); HP PCLAN
PLUS (27247B and 27252A); HP 10/100VG PCLAN (ISA/EISA/PCI); Intel EtherExpress; Intel
EtherExpress Pro; NE2000/NE1000 (not all clones work, however); New Media Ethernet; Racal-
Interlan NI5210 (i82586 Ethernet chip); Racal-Interlan NI6510 (am7990 lance chip) (this board doesn’t
work if your computer has more than 16MB of RAM); PureData PDUC8028, PDI8023; SEEQ 8005;
SMC Ultra; Schneider & Koch G16; Western Digital WD80x3; and Zenith Z-Note/IBM ThinkPad 300
built-in adapter. The following pocket and portable adapters have been tested and will work with Linux:
AT-Lan-Tec/RealTek parallel port adapter and D-Link DE600/DE620 parallel port adapter. The
following methods can be used to connect to a network: SLIP/CSLIP/PPP (serial port); EQL (serial IP
load balancing); and PLIP (parallel port) using a bidirectional cable.

In addition, Linux works with all ARCnet cards and the IBM Tropic chipset Token Ring cards. Finally,
Linux will work with the following amateur radio (AX.25) cards: Ottawa PI/PI2 and most generic 8530-
based HDLC boards.

WARNING: The following line appears in the HARDWARE-HOWTO regarding the 3Com
3C501: “avoid like the plague.”

In addition, Linux will work with the following Ethernet cards once you go out and grab patches from
the Internet. 3Com Demon Ethercards (3C592, 3C597 (100 mbps)) (EISA), with the patch at http://
cesdis.gsfc.nasa.gov/linux/drivers/vortex.html; 3Com Vortex Ethercards (3C590, 3C595 (100 mbps))
(PCI), with the patch at http://cesdis.gsfc.nasa.gov/linux/drivers/vortex.html; DEC 21040/21140 Tulip,
with a patch at http://cesdis.gsfc.nasa.gov/linux/drivers/tulip.html; SMC PCI EtherPower 10/100, with a
patch at http://cesdis.gsfc.nasa.gov/linux/drivers/tulip.html; and the HP J2585 (PCI) and HP J2573 (ISA)
(ATT2MDx1 / 100VG), with a patch at http://cesdis1.gsfc.nasa.gov:80/linux/drivers/100vg.html.

http://cesdis.gsfc.nasa.gov/linux/drivers/vortex.html
http://cesdis.gsfc.nasa.gov/linux/drivers/vortex.html
http://cesdis.gsfc.nasa.gov/linux/drivers/vortex.html
http://cesdis.gsfc.nasa.gov/linux/drivers/tulip.html
http://cesdis.gsfc.nasa.gov/linux/drivers/tulip.html
http://cesdis1.gsfc.nasa.gov/linux/drivers/100vg.html

Dealing with a network card is like dealing with any other Linux hardware peripheral: you need to make
sure it’s not conflicting with other PC hardware. Note the following from the Slackware FAQ:

Q. I also have an SMC card. I could only get mine to work on IRQ 3 or 4.

A. There might be a way to work around the problem, but I haven’t had time to go looking
for it. I don’t know what happened but today when I rebooted my machine after power
shutdown, the Ethernet card suddenly started working. I only changed the base address
options in the drivers file to look for 0x2a0 address.

WARNING: Xircom adapters (PCMCIA and parallel port) are not supported.

Multiport Controllers

Linux supports many multiport controllers. They fall into two groups: intelligent controllers and
nonintelligent controllers. Supported nonintelligent controllers are: AST FourPort and clones (4 port);
Accent Async-4 (4 port); Arnet Multiport-8 (8 port); Bell Technologies HUB6 (6 port); Boca BB-1004,
1008 (4, 8 port), with no DTR, DSR, and CD; Boca BB-2016 (16 port); Boca IO/AT66 (6 port); Boca IO
2by4 (4 serial/2 parallel, uses 5 IRQs); Computone ValuePort (4, 6, 8 port) (AST FourPort-compatible);
DigiBoard PC/X (4, 8, 16 port); Comtrol Hostess 550 (4, 8 port); PC-COMM 4-port (4 port); SIIG I/O
Expander 4S (4 port, uses 4 IRQs); STB 4-COM (4 port); Twincom ACI/550; and Usenet Serial Board
II (4 port). These nonintelligent controllers usually come in two varieties:

• The first uses standard port addresses and four IRQs.
• The second is AST FourPort-compatible and uses a selectable block of addresses and a single
IRQ. (Addresses and IRQs are set using the setserial utility.)

Linux supports the following intelligent multiport controllers: Cyclades Cyclom-8Y/16Y (8, 16 port)
(ISA/PCI); Stallion EasyIO (ISA)/EasyConnection 8/32 (ISA/MCA); and Stallion EasyConnection 8/64
and ONboard (ISA/EISA/MCA)/Brumby/Stallion (ISA).

In addition, Table 1.3 lists multiport controllers that Linux will recognize after patches have been
downloaded from the Internet and installed.

Table 1.3Multiport Controllers and the Patch Locations

Controller Internet Address

Comtrol RocketPort (8/16/32 port) ftp://tsx-11.mit.edu/pub/linux/packages/comtrol/

ftp://tsx-11.mit.edu/pub/linux/packages/comtrol/

DigiBoard PC/Xe (ISA) and PC/Xi (EISA) ftp://ftp.digibd.com/drivers/linux/

Moxa C218 (8 port) / C320 (8/16/24/32
expandable)

ftp://ftp.moxa.com.tw/drivers/c-218-320/linux/

Specialix SIO/XIO (modular, 4 to 32 ports)
ftp://sunsite.unc.edu/pub/Linux/kernel/patches/
serial/sidrv0_5.taz

Modems

Again, if a modem works under DOS, it should work under Linux—whether it is internal or external.
When you install Linux, you’ll need to specify the location of the modem (serial port 1, 2, 3, or 4). This
also goes for PCMCIA modems.

You’ll need fax software to take advantage of a fax modem. Some fax modems require special
programs: the Digicom Connection 96+/14.4+ needs a DSP code downloading program (which can be
found at ftp://sunsite.unc.edu/pub/Linux/system/Serial/smdl-linux.1.02.tar.gz), and the ZyXEL U-1496
series needs ZyXEL 1.4, a modem/fax/voice control program (which can be found at ftp://sunsite.unc.
edu/pub/Linux/system/Serial/ZyXEL-1.4.tar.gz).

Previous Table of Contents Next

ftp://ftp.digibd.com/drivers/linux/
ftp://ftp.moxa.com.tw/drivers/c-218-320/linux/
ftp://sunsite.unc.edu/pub/linux/kernel/patches/serial/sidrv0_5.taz
ftp://sunsite.unc.edu/pub/linux/kernel/patches/serial/sidrv0_5.taz
ftp://sunsite.unc.edu/pub/linux/system/serial/smdl-linux.1.02.tar.gz
ftp://sunsite.unc.edu/pub/linux/system/serial/zyxel-1.4.tar.gz
ftp://sunsite.unc.edu/pub/linux/system/serial/zyxel-1.4.tar.gz

-->

Previous Table of Contents Next

ISDN Cards

ISDN cards fall under the category of either direct-link devices to the Internet or replacements for
standard modems or network cards. If you’re using an ISDN card to emulate a modem or network card,
you should have no problem. However, if you’re using ISDN to connect to the Internet, you’ll need to
install some patches. Table 1.4 lists the ISDN devices that Linux will recognize, followed by an Internet
location for the appropriate patch.

Table 1.4ISDN Devices and the Patches that Love Them

ISDN Device Internet Patch Location

3Com Sonix Arpeggio
ftp://sunsite.unc.edu/pub/Linux/kernel/patches/
network/sonix.tgz

Combinet EVERYWARE 000 ISDN
ftp://sunsite.unc.edu/pub/Linux/patches/network/
combinet1000isdn-1.02.tar.gz

Diehl SCOM card ftp://sunsite.unc.edu/pub/Linux/kernel/patches/
network/isdndrv-0.1.1.tar.gz

ICN ISDN / Teles ISDN Creatix AVM ISDN
cards

ftp://ftp.franken.de/pub/isdn4linux/

German ISDN (1TR6) and Euro-ISDN
ftp://ftp.unistuttgart.de/pub/unix/systems/linux/
isdn/

If you want more information on using Linux and ISDN devices, point your Web browser to http://www.
ix.de/ix/linux/linux-isdn.html.

ATM Network Adapters

Work has been done on the Efficient Networks ENI155P-MF 155 Mbps ATM adapter. You can grab a
driver and description of the process from http://lrcwww.epfl.ch/linux-atm/.

Frame Relay Cards

Work has been done on a driver for the Sangoma S502 56K Frame Relay card. You can grab a copy

ftp://sunsite.unc.edu/pub/linux/kernel/patches/network/sonix.tgz
ftp://sunsite.unc.edu/pub/linux/kernel/patches/network/sonix.tgz
ftp://sunsite.unc.edu/pub/linux/patches/network/combinet1000isdn-1.02.tar.gz
ftp://sunsite.unc.edu/pub/linux/patches/network/combinet1000isdn-1.02.tar.gz
ftp://sunsite.unc.edu/pub/linux/kernel/patches/network/isdndrv-0.1.1.tar.gz
ftp://sunsite.unc.edu/pub/linux/kernel/patches/network/isdndrv-0.1.1.tar.gz
ftp://ftp.franken.de/pub/isdn4linux/
ftp://ftp.unistuttgart.de/pub/unix/systems/linux/isdn/
ftp://ftp.unistuttgart.de/pub/unix/systems/linux/isdn/
http://www.ix.de/ix/linux/linux-isdn.html
http://www.ix.de/ix/linux/linux-isdn.html
http://lrcwww.epfl.ch/linux-atm/

from ftp://ftp.sovereign.org/pub/wan/fr/.

Other Devices

These days, it’s hard to buy a PC that’s not gussied up with a slew of additional components, such as
sound boards and network cards. In this section, we’ll run down the most popular of the add-ons and
other miscellaneous components.

Sound Boards

Linux supports a wide range of sound cards, including: 6850 UART MIDI; Adlib (OPL2); Audio Excell
DSP16; Aztech Sound Galaxy NX Pro; cards based on the Crystal CS4232 (plug-and-play); ECHO-PSS
cards (Orchid SoundWave32, Cardinal DSP16); Ensoniq SoundScape; Gravis Ultrasound; Gravis
Ultrasound 16-bit sampling daughterboard; Gravis Ultrasound MAX; Logitech SoundMan Games
(SBPro, 44kHz stereo support); Logitech SoundMan Wave (Jazz16/OPL4); Logitech SoundMan 16
(PAS-16 compatible); MPU-401 MIDI; MediaTriX AudioTriX Pro; Media Vision Premium 3D
(Jazz16); Media Vision Pro Sonic 16 (Jazz); Media Vision Pro Audio Spectrum 16; Microsoft Sound
System (AD1848); OAK OTI-601D cards (Mozart); OPTi 82C928/82C929 cards (MAD16/MAD16
Pro); Sound Blaster; Sound Blaster Pro; Sound Blaster 16 (not plug-and-play!); Turtle Beach Wavefront
cards (Maui, Tropez); and Wave Blaster (and other daughterboards).

In addition, the following sound boards can be coaxed into working under Linux, provided you install
the proper patches and drivers (which can be found at the accompanying Internet addresses): MPU-401
MIDI (ftp://sunsite.unc.edu/pub/Linux/kernel/sound/mpu401-0.2.tar.gz); PC speaker/parallel-port DAC
(ftp://ftp.informatik.hu-berlin.de/pub/os/linux/hu-sound/); and Turtle Beach MultiSound/Tahiti/
Monterey (ftp://ftp.cs.c olorado.edu/users/mccreary/archive/tbeach/multisound/).

Not every feature on every sound board is supported, however. The ASP chip on Sound Blaster 16 series
and AWE32 is not supported, and neither is the AWE32’s onboard E-mu MIDI synthesizer.

Also, the Sound Blaster 16 with DSP 4.11 and 4.12 has a hardware bug that causes hung/stuck notes
when playing MIDI and digital audio at the same time.

Why would you use a sound board and Linux? Well, Doom works much better when there’s sounds of
agony to accompany the splattering bits of blood and brain tissue. In addition, there’s a new breed of
Internet audio software that’s actually supported for use under Linux. Some of it’s actually pretty cool,
such as the Real Audio real-time audio decoder. We’ll be covering sound, Linux, and the Internet
throughout the course of this book.

Mouse and Joystick

ftp://ftp.sovereign.org/pub/wan/fr/
ftp://sunsite.unc.edu/pub/linux/kernel/sound/mpu401-0.2.tar.gz
ftp://ftp.informatik.hu-berlin.de/pub/os/linux/hu-sound/
ftp://ftp.cs.c olorado.edu/users/mccreary/archive/tbeach/multisound/

We’ve used various mice with Linux, mostly under the auspices of the X Window System. Basically, if
you use a serial mouse with Linux, you’ll just be telling the system to look to a specific serial port for
the mouse. (You’ll learn this in Chapter 2 and the Linux installation.) The same goes for trackballs and
joysticks that run off a serial port. The following mouse models are explicitly supported under Linux:
Microsoft serial mouse, Mouse Systems serial mouse, Logitech Mouseman serial mouse, Logitech serial
mouse, ATI XL Inport busmouse, C&T 82C710 (QuickPort; used on Toshiba, TI Travelmate laptops),
Microsoft busmouse, Logitech busmouse, and the PS/2 (auxiliary device) mouse.

To use other mouse models, you’ll need to grab a patch. These would include the Sejin J-mouse (the
patch is at ftp://sunsite.unc.edu/pub/Linux/kernel/patches/console/jmouse.1.1.70-jmouse.tar.gz) and
MultiMouse, which uses multiple mouse devices as a single mouse (the patch is at ftp://sunsite.unc.edu/
pub/Linux/system/Misc/MultiMouse-1.0.tgz).

If your joystick doesn’t work, you may want to check out one of the joystick drivers at ftp://sunsite.unc.
edu/pub/Linux/kernel/patches/console/joystick-0.7.3.tgz or ftp://sunsite.unc.edu/pub/Linux/kernel/
patches/console/joyfixed.tgz.

In addition, touchpads that emulate a mouse (like the Alps Glidepoint) should work if they precisely
emulate a supported mouse.

Previous Table of Contents Next

ftp://sunsite.unc.edu/pub/linux/kernel/patches/console/jmouse.1.1.70-jmouse.tar.gz
ftp://sunsite.unc.edu/pub/linux/system/misc/multimouse-1.0.tgz
ftp://sunsite.unc.edu/pub/linux/system/misc/multimouse-1.0.tgz
ftp://sunsite.unc.edu/pub/linux/kernel/patches/console/joystick-0.7.3.tgz
ftp://sunsite.unc.edu/pub/linux/kernel/patches/console/joystick-0.7.3.tgz
ftp://sunsite.unc.edu/pub/linux/kernel/patches/console/joyfixed.tgz
ftp://sunsite.unc.edu/pub/linux/kernel/patches/console/joyfixed.tgz

-->

Previous Table of Contents Next

Printers

Essentially any printer connected to a parallel or serial port that works under DOS should work under
Linux. During the installation, you’ll be asked to specify which port contains the printer. There are
special programs that enhance the basic printing capabilities: HP LaserJet 4 users can grab free-lj4, a
printing modes control program, at ftp://sunsite.unc.edu/pub/Linux/system/Printing/free-lj4-1.1p1.tar.gz,
while those using the BiTronics parallel port interface can grab a program at ftp://sunsite.unc.edu/pub/
Linux/kernel/misc/bt-ALPHA-0.0.1.tar.gz.

The issue becomes a little dicier when dealing with XFree86 and Ghostscript, the utility used to create
and print PostScript documents. Ghostscript allows you to print PostScript-formatted documents on non-
PostScript printers; much of the UNIX documentation that flows down the pike is formatted with
PostScript, and this capability is very handy. Ghostscript supports the following printers: Apple
Imagewriter; C. Itoh M8510; Canon BubbleJet BJ10e, BJ200, LBP-8II, and LIPS III; DEC
LA50/70/75/75plus, LN03, and LJ250; Epson 9 pin, 24 pin, LQ series, Stylus, and AP3250; HP 2563B,
DesignJet 650C, DeskJet/Plus/500, DeskJet 500C/520C/550C/1200C color, LaserJet/Plus/II/III/4, and
PaintJet/XL/XL300 color; IBM Jetprinter color and Proprinter; Imagen ImPress; Mitsubishi CP50 color;
NEC P6/P6+/P60; Okidata MicroLine 182; Ricoh 4081; SPARCprinter; StarJet 48 inkjet printer;
Tektronix 4693d color 2/4/8 bit and 4695/4696 inkjet plotter; and Xerox XES printers (2700, 3700,
4045, etc.). Those using the Canon BJC600 and Epson ESC/P color printers can grab a printer program
at ftp://petole.imag.fr/pub/ postscript/.

NOTE: Ghostscript will be covered in much more detail in Chapter 5.

Scanners

Slackware Linux right out of the box doesn’t support any scanners. However, several folks have
contributed scanner drivers and programs to the Linux community, and there may be a program
available on the Internet for your particular scanner. (Be warned that some of the products listed here are
commercial products.) Scanners with support software available include: A4 Tech AC 4096 (ftp://ftp.
informatik.hu-berlin.de/pub/local/linux/ac4096.tgz), Epson GT6000 (ftp://sunsite.unc.edu/pub/Linux/
apps/graphics/scanners/ppic0.5.tar.gz), Genius GS-B105G (ftp://tsx-11.mit.edu/pub/linux/ALPHA/
scanner/gs105-0.0.1.tar.gz), Genius GeniScan GS4500 handheld scanner (ftp://tsx-11.mit.edu/pub/linux/
ALPHA/scanner/gs4500-1.3.tar.gz), HP ScanJet and ScanJet Plus (ftp://ftp.ctrl-c.liu.se/unix/linux/
wingel/), HP ScanJet II series SCSI (ftp://sunsite.unc.edu/pub/Linux/apps/graphics/scanners/hpscanpbm-

ftp://sunsite.unc.edu/pub/linux/system/printing/free-lj4-1.1p1.tar.gz
ftp://sunsite.unc.edu/pub/linux/kernel/misc/bt-alpha-0.0.1.tar.gz
ftp://sunsite.unc.edu/pub/linux/kernel/misc/bt-alpha-0.0.1.tar.gz
ftp://petole.imag.fr/pub/ postscript/
ftp://ftp.informatik.hu-berlin.de/pub/local/linux/ac4096.tgz
ftp://ftp.informatik.hu-berlin.de/pub/local/linux/ac4096.tgz
ftp://sunsite.unc.edu/pub/linux/apps/graphics/scanners/ppic0.5.tar.gz
ftp://sunsite.unc.edu/pub/linux/apps/graphics/scanners/ppic0.5.tar.gz
ftp://tsx-11.mit.edu/pub/linux/alpha/scanner/gs105-0.0.1.tar.gz
ftp://tsx-11.mit.edu/pub/linux/alpha/scanner/gs105-0.0.1.tar.gz
ftp://tsx-11.mit.edu/pub/linux/alpha/scanner/gs4500-1.3.tar.gz
ftp://tsx-11.mit.edu/pub/linux/alpha/scanner/gs4500-1.3.tar.gz
ftp://ftp.ctrl-c.liu.se/unix/linux/wingel/
ftp://ftp.ctrl-c.liu.se/unix/linux/wingel/
ftp://sunsite.unc.edu/pub/linux/apps/graphics/scanners/hpscanpbm-0.3a.tar.gz

0.3a.tar.gz), HP ScanJet family (including ScanJet 3c) (http://www.tummy.com/xvscan/), Logitech
Scanman 32/256 (ftp://tsx-11.mit.edu/pub/linux/ALPHA/scanner/logiscan-0.0.2.tar.gz), Mustek M105
handheld scanner with GI1904 interface (ftp://tsx-11.mit.edu/pub/linux/ALPHA/scanner/scan-driver-
0.1.8.tar.gz), Mustek Paragon 6000CX (ftp://sunsite.unc.edu/pub/Linux/apps/graphics/scanners/muscan-
1.1.5.taz), and Nikon Coolscan SCSI 35mm film scanner (ftp://sunsite.unc.edu/pub/Linux/apps/graphics/
scanners/).

Video-Capture Boards

Slackware Linux doesn’t support any video-capture boards right out of the box. To use such a board,
you’ll need to make sure that the board has a driver, and then go out and grab that driver from the
Internet. Boards with Linux drivers available are: FAST Screen Machine II (ftp://sunsite.unc.edu/pub/
Linux/apps/video/ScreenMachineII.1.2.tgz), ImageNation Cortex I (ftp://sunsite.unc.edu/pub/Linux/apps/
video/cortex.drv.0.1.tgz), ImageNation CX100 (ftp://sunsite.unc.edu/pub/Linux/apps/video/cxdrv-
0.1beta.tar.gz), Pro Movie Studio (ftp://sunsite.unc.edu/pub/Linux/apps/video/PMS-grabber.2.0.tgz),
Quanta WinVision video capture card (ftp://sunsite.unc.edu/pub/Linux/apps/video/fgrabber-1.0.tgz),
Video Blaster/Rombo Media Pro+ (ftp://sunsite.unc.edu/pub/Linux/apps/video/vid_src.gz), and VT1500
TV cards (ftp://sunsite.unc.edu/pub/Linux/apps/video/vt1500-1.0.5.tar.gz).

Uninterruptible Power Systems

Slackware Linux doesn’t support UPSes right out of the box, but there are drivers available for APC
SmartUPS (ftp://sunsite.unc.edu/pub/Linux/system/UPS/apcd-0.1.tar.gz) and general UPSes with RS-
232 monitoring port (known as the “unipower” package) (ftp://sunsite.unc.edu/pub/Linux/system/UPS/
unipower-1.0.0.tgz). Others have managed to interface Linux with other UPSes; for more details, check
out the UPS-HOWTO, on the accompanying CD-ROM.

Data-Acquisition Equipment

Hardware used for data acquisition is not explicitly supported in Slackware Linux, but you can grab
software from the Linux Lab Project (ftp://koala.chemie.fu-berlin.de/pub/linux/LINUX-LAB/) to learn
about supporting the following devices: Analog Devices RTI-800/815 ADC/DAC board, CED 1401,
DBCC CAMAC, IEEE-488 (GPIB, HPIB) boards, Keithley DAS-1200, and National Instruments AT-
MIO-16F / Lab-PC+.

Miscellaneous

If a device is connected to the SCSI card and Linux has no problems with the SCSI card, then you
should have no problems with the device. This would include most CDR, WORM, optical, and floptical
drives. Additionally, we’ve not heard complains with proprietary drives from the likes of SyQuest and

ftp://sunsite.unc.edu/pub/linux/apps/graphics/scanners/hpscanpbm-0.3a.tar.gz
http://www.tummy.com/xvscan/
ftp://tsx-11.mit.edu/pub/linux/alpha/scanner/logiscan-0.0.2.tar.gz
ftp://tsx-11.mit.edu/pub/linux/alpha/scanner/scan-driver-0.1.8.tar.gz
ftp://tsx-11.mit.edu/pub/linux/alpha/scanner/scan-driver-0.1.8.tar.gz
ftp://sunsite.unc.edu/pub/linux/apps/graphics/scanners/muscan-1.1.5.taz
ftp://sunsite.unc.edu/pub/linux/apps/graphics/scanners/muscan-1.1.5.taz
ftp://sunsite.unc.edu/pub/linux/apps/graphics/scanners/
ftp://sunsite.unc.edu/pub/linux/apps/graphics/scanners/
ftp://sunsite.unc.edu/pub/linux/apps/video/screenmachineii.1.2.tgz
ftp://sunsite.unc.edu/pub/linux/apps/video/screenmachineii.1.2.tgz
ftp://sunsite.unc.edu/pub/linux/apps/video/cortex.drv.0.1.tgz
ftp://sunsite.unc.edu/pub/linux/apps/video/cortex.drv.0.1.tgz
ftp://sunsite.unc.edu/pub/linux/apps/video/cxdrv-0.1beta.tar.gz
ftp://sunsite.unc.edu/pub/linux/apps/video/cxdrv-0.1beta.tar.gz
ftp://sunsite.unc.edu/pub/linux/apps/video/pms-grabber.2.0.tgz
ftp://sunsite.unc.edu/pub/linux/apps/video/fgrabber-1.0.tgz
ftp://sunsite.unc.edu/pub/linux/apps/video/vid_src.gz
ftp://sunsite.unc.edu/pub/linux/apps/video/vt1500-1.0.5.tar.gz
ftp://sunsite.unc.edu/pub/linux/system/ups/apcd-0.1.tar.gz
ftp://sunsite.unc.edu/pub/linux/system/ups/unipower-1.0.0.tgz
ftp://sunsite.unc.edu/pub/linux/system/ups/unipower-1.0.0.tgz
ftp://koala.chemie.fu-berlin.de/pub/linux/linux-lab/

Bernoulli.

In addition, there are other miscellaneous devices that are definitely not supported by Slackware Linux
but that have drivers available on the Internet. Our favorite is a driver for the Mattel Powerglove (ftp://
sunsite.unc.edu/pub/Linux/apps/linux-powerglove.tgz); why mess with a simple mouse when you can
grab Linux by the throat to make it work? Other miscellaneous device drivers include support for the
AIMS Labs RadioTrack FM radio card (ftp://sunsite.unc.edu/pub/Linux/apps/sound/radiotrack-1.1.tgz),
Maralu chip-card reader/writer (ftp://ftp.thp.uni-koeln.de/pub/linux/chip/), Reveal FM Radio card (ftp://
magoo.uwsuper. edu/pub/fm-radio/), and Videotext cards (ftp://sunsite.unc.edu/pub/Linux/apps/video/
videoteXt-0.5.tar.gz).

Previous Table of Contents Next

ftp://sunsite.unc.edu/pub/linux/apps/linux-powerglove.tgz
ftp://sunsite.unc.edu/pub/linux/apps/linux-powerglove.tgz
ftp://sunsite.unc.edu/pub/linux/apps/sound/radiotrack-1.1.tgz
ftp://ftp.thp.uni-koeln.de/pub/linux/chip/
ftp://magoo.uwsuper. edu/pub/fm-radio/
ftp://magoo.uwsuper. edu/pub/fm-radio/
ftp://sunsite.unc.edu/pub/linux/apps/video/videotext-0.5.tar.gz
ftp://sunsite.unc.edu/pub/linux/apps/video/videotext-0.5.tar.gz

-->

Previous Table of Contents Next

Dealing with Some Specific Systems

The guidelines so far in this chapter pertain to components. However, the Linux community has found
that some specific PC configurations have posed some challenges.

NOTE: David Ludwig (davidl@hal-pc.org) has been compiling a list of user experiences with
specific hardware configurations at http://www.hal-pc.org/~davidl/linux/desktop.config.html.
This list is quite long and getting longer, so if you’re curious about someone else’s experiences
with your computer, you may want to check out this database. Be warned, however, that many of
the respondents to the survey just list generic information, not the names of specific models.

Compaq Deskpro XL

If you’re into PC hardware at all—and you probably are, if you’ve gotten this far—you’ll recognize how
odd the configuration for the Compaq Deskpro XL series is: a PCI/EISA bus system with an onboard
AMD SCSI/ethernetchip (AMD79C974), a Microsoft Sound System-compatible audio system built
around an AD1847, and a QVision 2000 graphics card with a Matrox Atlas chip and a Cirrus Logic
PX2085 Ramdac.

Unfortunately, the Deskpro XL series was pretty popular. Be warned that you may need to jump through
some hoops to get Linux up and running; those who have done it say that you can pretty much forget
about any sound support, and you may run into additional problems during installation.

Because these details can be rather technical, we’re not going to describe them here, but we are
including the appropriate HOWTO on the CD-ROM. You can check for an updated HOWTO at http://
www-c724.uibk.ac.at/XL/.

Linux on Laptops

Generally speaking, Linux should run fine on most laptops with enough horsepower—that is, the newer
breed of 486- and Pentium-based laptops on the market, decked out with at least 8MB of RAM.
However, you may not be able to get the full functionality of the laptop when running Linux; for
example, most laptops feature proprietary power-management and graphics capabilities that Linux
simply can’t use. In these cases, you’ll lose the advanced power management, and you’ll need to run
Linux and XFree86 in a lower graphics mode (VGA or SuperVGA).

http://www.hal-pc.org/~davidl/linux/desktop.config.html
http://www-c724.uibk.ac.at/xl/
http://www-c724.uibk.ac.at/xl/

If you’ve spent any time at all in the laptop world, however, you know that each laptop model tends to
be a little different when it comes to hardware and assorted gewgaws. The Linux world has found that
some laptop models present challenges when it comes to installation and configuration. In this section,
we’ll run down some of the more popular laptop models and the challenges faced when using Linux on
them. Also, Table 1.5 lists (in abbreviated form) the results of the Linux Laptop Survey, where users
from around the world reported on laptops that successfully ran Linux.

NOTE: The Linux Laptop Home Page (http://www.cs.utexas.edu/users/kharker/linux-laptop/)
contains additional information on laptops and Linux, including many additional sites that contain
information about specific laptop models beyond what is covered here. Some of the information
here is gleaned from that Web site, courtesy of Kenneth E. Harker (kharker@cs.utexas.edu), and
some is from our personal experiences. If you own a laptop and want to know more about using
Linux on it, the Linux Laptop Home Page is really the place to start.

An alternative source of information is the Linux on Portables Web site, found at http://queequeg.
ifa.hawaii.edu/linux/portables.html.

WARNING: Many laptop users are using parallel-port SCSI adapters. However, most of these
adapters are not yet supported by Linux. (Only the parallel-SCSI adapter for the Iomega ZIP drive
is supported.)

NOTE: In Table 1.5, we list whether the laptop has power conservation that works with Linux.
This isn’t necessarily APM; it could be proprietary hardware routines written into the laptop’s
BIOS.

Previous Table of Contents Next

http://www.cs.utexas.edu/users/kharker/linux-laptop/
http://queequeg.ifa.hawaii.edu/linux/portables.html
http://queequeg.ifa.hawaii.edu/linux/portables.html

-->

Previous Table of Contents Next

Table 1.5The Condensed Results of the Linux Laptop Survey, as of April 1997

Laptop Make and
Model CPU Max battery

Power
Cons.? Notes

AcerNote 350 Pentium/100 2 hours Yes NE200 Ethernet,
modem work;
APM does not

AMS PN325 486/66 2 hours Yes None

AMS SoundPro 486/50 3 hours Yes X is balky

AMS TravelPro 5300 486/66 1.5–2 hours Yes PCMCIA IC-card
Ethernet works

AMS TravelPro 5366 486/66 1 hour n/a None

ARM TS30A 486DX4/100 2.5–3 hours Yes PCMCIA PreMax
14.4 modem works

AST Advantage!
Explorer

486sx/25 2–3 hours Yes None

AST PowerExec 4/25 486sx/25 n/a yes PCMCIA D-link
works; PCMCIA
Intel 1440 does not

AST PowerExec 486/33SL 2–3 hours Yes None

AT&T Globalyst 200S 486DX4/75 2 hours Yes PCMCIA works

AT&T Globalyst 250 486DX4/100 2 hours Yes Microphone works

Austin Active Color 486/66 2 hours Yes PCMCIA D-Link
DE-650 works

Austin 33MHz Mono
(Arima)

486/33 3 hours Yes Internal modem
works

Austin DX66-2 (Arima) 486/66 2 hours
* Yes None

Austin/IPC (Arima)
466D

486/66 n/a Yes None

BIT DU33 486/33 3.5 hours n/a None

BIT FR-800 486/66 2 hours Yes None

Canon Innova
Subnotebook #10

486sx/33 1.5 hours No None

Caravene AV-B5NT 486sx/25 2 hours Yes None

Chicony NB5 486/66 1 hour Yes PCMCIA SCSI,
Ethernet, modem
work

Chicony NoteBook
9800

486/66 2 hours Yes Intel 14.4 DataFax
runs after some
tweaking

Compaq Aero 4/33C 486sx/33 2–3 hours Yes See later

Compaq Concerto 4/33 486/33 3.5 hours Yes Pen does not work
w/Linux; see later
for a fix

Compaq Contura 4/25 486sx/25 4 hours Yes See later

Compaq Contura 4/25cx 486SL/25 under 2 hours No Trackball does not
work; see later

Compaq Contura 430C 486DX4-100 2 hours Yes None

Compaq 4/25 Lite 486SL/25 4 hours Yes None

Compaq LTE Elite 4/75
CX

486DX4XL/75 2–8 hours Yes None

Compaq LTE 5280 Pentium n/a n/a None

Compat TS37 (Wang) 486sx/25 2 hours n/a X not tested

Compudyne SubNote
4SL/25

486SL/25 3 hours Yes AT-LAN-TEK
(ATP) parallel
worked

Databyte 486SLC 486SLC/25 4 hours No None

DECpc 425 SL/e 486SL/25 3.5 hours Yes None

DECpc 433SLC
premium (AST)

486/33 SLC 2 hours Yes PCMCIA ethernet
card works

Dell 320N+ 386sx/20 3.5 hours No PCMCIA D-Link
600 works

Dell Latitude 433C 486sx/33 1 hour No None

Dell Latitude XP
4100cx

486DX4/100 3 hours Yes PCMCIA Ethernet,
modem (using
SLIP) work

DUAL 486sx/25 2.5 hrs No None

DUAL SKD-4000 486/66 1 hour No None

EPS Technologies Apex Pentium/133 1.5 hours Yes None

Epson 700 Cyrix DX33 2.5 hours Yes Linksys ne2000
combo card works

Epson Direct Endeavor
NT-500

486DX4/75 1 hour Yes None

Epson NB-SL/25 386SL/25 n/a Yes None

Epson VN575ST Pentium/75 1 hour n/a None

Escom Paradigma SX33
486sx/33 2 hours Yes Sound card does

not work

Escom Notebook 90 Pentium/90 1.5 hours Yes None

FOSA 9200M 486DX/66 1 hour Yes Hardware extras
don’t work with
Linux

Gateway 2000
ColorBook

486sx/33 1.25–1.75 hours Yes None

Gateway 2000
HandBook

486sx/25 1 hour No None

Gateway 2000
HandBook

486DX/40 1–1.5 hours Yes PCMCIA D-link
600 works

Gateway 2000
HandBook

486SL/40 2–2.5 hours Yes None

Gateway 2000 Liberty 486DX4/100 3 hours Yes None

Gateway Solo Pentium/150 2.5 hours Yes CD-ROM included

GRiD 1450SX 386sx/16 n/a Yes X will not run if
less than 3MB of
RAM

GRiD 1550SX 386sx/20 1 hour Yes None

GRiD 1660 386sx/20 1.5 hours Yes PCMCIA D-link
600 works

Highscreen 486 SLC 33 Cyrix 486/33 2–3 hours Yes Quirks with X

Highscreen Blue Note 486DX2/66 2 hours Yes Problems with X
on dual-scan
monitor, but not
external monitor

Hyperdata Expor
CD100

486DX4/100 4 hours Yes Some problems
with Ethernet
cards; other
PCMCIA cards
work fine

IBM L40SX 386sx/20 n/a n/a None

IBM PS/Note 425 486SL/25 2.5 hours Yes None

IBM ThinkPad 340CSE 486SL/50 3 hours Yes See later

IBM ThinkPad 350 486SL/25 3 hours Yes Megahertz
PCMCIA modem
works; see later

IBM ThinkPad 365
CSD

486DX4/75 3–6 hours Yes None

IBM ThinkPad 500 486SLC/50 2 hours Yes None

IBM ThinkPad 701C 486DX4/75 2.5 hours Yes IBM PCMCIA
Ethernet

IBM ThinkPad 750
(Mono)

486/33 6 hours Yes IBM Ethernet
PCMCIA, Intel
14.4 modem work;
see later

IBM ThinkPad 750CS 486SL/33 3 hours Yes PCMCIA D-Link
650, Megahertz
modem, IBM
modem all work; X
server needs fixes;
see later

IBM ThinkPad 755C 486DX4/75 3 hour + Yes See later

Innovace 620px Pentium/75 n/a n/a None

INSI EchoBook 486DX2/50 2–2.5 hours Yes PCMCIA D-Link
650 works

INSI EchoBook 486DX4/75 2–3 hours Yes PCMCIA D-Link
650 works

IPC P5 486sx/25 2 hours + Yes None

IPC Porta-PC P5E-486/
DSTN

486DX4/100 3 hours Yes None

Jetta Jetbook Cyrix 486/3333 1 hour Yes None

Lion NB 8500 486DX4-S/100 2 hours Yes None

MacPerson Scriba 486DX2/66 3.5–4 hours Yes None

Magnavox Metalis
SX/16

386sx/16 1 hour Yes Conflicts with
power management

Midwest Micro Elite 486sx/25 2 hours Yes None

Midwest Micro Elite 486slc/33 2 hours n/a None

Midwest Micro Ultra 486sx/25 3 hours Yes PCMCIA D-Link
via parallel port

Midwest Micro Elite 486DX2/66MHZ 2 hours Yes 3Com Etherlink
III, modem, EXP
Thinfax 14400
work

Midwest Micro
Soundbook

486DX4/100 2 hours Yes PCMCIA D-Link
650 works

Midwest Micro
Soundbook P-90

Pentium/90 1.75–2 hours Yes None

NEC Ultralite Versa E
486/50 2 hours n/a PCMCIA D-link

works

NEC Ultralite Versa E
w/docking

486/50 2 hours n/a
Docking works

NEC Ultralite Versa
33C

486SL/33 3.5–5 hours yes Battery life
measured with
second battery in
place of floppy;
Megahertz XJ144
PCMCIA modem
works

NEC Ultralite Versa
S/33D

486sx/33 1.5 hours Yes See later

NEC Versa 4000C Pentium/75 2.5 hours Yes 3Com EtherLink
III PCMCIA works

NEC Versa 6030X Pentium/133 2.1 hours Yes None

NoteBook 3500 486sx/25 1.5 hours No No external
monitor

Notestar NP-743D 486DX2/66 1.5 hours Yes PCMCIA D-Link
650 works

Olivetti Philos 33 386sx/20 8 hours Yes None

Paccomp 486DX2/66 3 hours Yes PCMCIA works

Panasonic CF-25 Pentium/133 1.5 hours Yes PCMCIA works

Prostar 9200 486DX4/100 3 hours Yes
3c589B PCMCIA
card works

SagerNP943 486/33 2 hours Yes PCMCIA D-Link,
modem work

Sager NP7500 486sx/33 2.5 hours Yes None

Sager NP7600 Pentium 90 2 hours Yes PET-105 (RPTI
EP400 Ethernet)
10Base2 and
10BaseT; 28k fax
modem all work

Sager NP8600 Pentium/75 1.5 hours Yes PCMCIA modem
works

Sager NP9200 486DX4/100 1.5–2 hours Yes None

Samsung 800 Pentium/90 2 hours Yes None

Samsung 800C Pentium/75 3 hours Yes None

SDK 4000 486SX/33 2 hours Yes NE2100-
compatible
Ethernet,modem;
power-
management
doesn’t work

SDK 4000 III Extended
version

486DX2/66 2 hours n/a PCMCIA didn’t
work

SEH DesignCD Pentium/100 1.5 hours Yes None

Siemens Nixdorf PCD 4
ND

486DX4/75 2.5 hours Yes None

Sharp PC-8650 486/33 n/a Yes Internal fax modem
works

SNI PCD-4NE 486SX-SL/33 2–3 hours Yes None

Tadpole P1000 Pentium 100 1.5 hours Yes None

Targa 486DX2/66 2–3 hours Yes None

TI Travelmate 4000E 486/50 1.25 hours No None

TI Travelmate Win4000 486DX2/50 1.5 hours No None

TI Travelmate 4000M
486DX4/100 1 hour Yes AHA1510 adapter

is slow

TI TravelMate 5000 Pentium/75 5–8 hours No PCMCIA Ethernet
(IBM CreditCard
Adapter) works

TI TravelMate 5100 Pentium/90 4–5 hours Yes Ethernet, modem
work

Toshiba Dynabook
GT475

486DX/75 3 hours Yes PCMCIA Ethernet
works; PCMCIA
CD-ROM, APM
does not

Toshiba T700CS Pentium/120 3 hours Yes CD-ROM works

Toshiba T1800 386sx/16 2 hours n/a None

Toshiba T1900C 486sx/20 1.5 hours n/a None

Toshiba T1910 486sx/33 2.5 hours Yes X does not work

Toshiba T1950 (mono) 486/20 3.5 hours Yes None

Toshiba T1950CT/200 486/40 2 hours Yes None

Toshiba Satellite T2100 486DX2/50 3 hours + Yes X not tested

Toshiba Satellite
T2135CS

486DX4/75 2–3 hours Yes Linksys PCMCIA
Ethercard works

Toshiba T2200SX 386/25 n/a Yes None

Toshiba T3100SX/40
386sx/16 1.5 hours n/a Only X in mono

tested

Toshiba T3200SXC 386sx n/a No X runs only in
mono

Toshiba T3400 486SL/33 5 hours No PCMCIA cards
work

Toshiba T4400SX 486sx/20 2 hours Yes None

Toshiba T4400SX 486sx/33 n/a Yes X not tested

Toshiba T4600 (mono) 486SL/33 5 hours Yes X not tested

Toshiba T4600 486SL/33 2 hours Yes PCMCIA: Linksys
Ethernet,
Megahertz XJ1144
14.4 fax modem
work

Toshiba T4600C 486SL/33 3 hours Yes Lacks PCMCIA
support

Toshiba T4700 486/33 SL 4 hours n/a None

Toshiba T5200/100 386sx/20 2 hours n/a None

Total Peripherals
NBD486

486sx/25 4 hours Yes Problems with X

Twinhead Slim 484 486/33 2 hours Yes De620 (parallel-
port adapter) works

Tulip NB 386sx/16 1 hour n/a X not tested

Vobis ModuleNote 486DX2/66 2 hours Yes X not tested

WinBook 486DX2/50 2 hours Yes None

WinBook XP 486/100 2 hours Yes CD-ROM works

Zenith SuperSport SX 386sx/16 n/a n/a None

Zenith Z*Lite 486SL/25 2 hours Yes None

Zenith Z-Note 425-lnc 486SL/25 2.5 hours Yes Driver available for
built-in Ethernet

Zenith Z-Star 433VL 486SX/33 n/a Yes None

Zeos Contenda 386
Subnotebook

486/25 3 hours Yes PCMCIA D-Link
DE600 works;
Linksys PE-EEP
pocket adapter did
not

*
Respondents to the survey reported battery lives ranging from 1.5 hours to 3 hours

Previous Table of Contents Next

-->

Previous Table of Contents Next

Other Specific Models

Just because Linux will run on a given laptop doesn’t mean that you can take full advantage of the
laptop’s hardware features. Many dedicated Linux users have taken the challenge of making Linux work
on their quirky laptops, and they’ve been gracious enough to share their solutions with the rest of the
Linux community. We’ll briefly run down some specific laptop models and how Linux was made to
work on them. If there’s a FAQ mentioned here, we’ve included it on the accompanying CD-ROMs.

NOTE: You can’t extrapolate from the specific models presented here. The laptop world isn’t
known for consistency among product lines, and what may be true of a specific model may not be
true for that model’s second cousin. Use the information presented here only for the specific
model, unless the information explicitly covers a wide range of models (as is the case with the
IBM ThinkPad information).

AST 900N

Basically, there are no major challenges with installing Linux on this laptop model, but there are some
pitfalls. A HOWTO on installing Linux on the AST 900N is included on the CD-ROM.

Compaq Concerto

The Compaq Concerto features a pen device, not a mouse. Linux doesn’t recognize the pen device, but
Dr. Joseph J. Pfeiffer Jr. has posted a driver at his Web site (http://www.cs.nmsu.edu/~pfeiffer/).

Compaq Contura Aero

The Compaq Contura Aero is a very popular and very inexpensive laptop model, but it poses many
challenges to the Linux user—so many that an entire FAQ has been devoted to making Linux work on
one. Issues range from making the PCMCIA floppy work to making specific function keys respond. Ali
Albayrak and Harald T. Alvestrand have put together a FAQ and posted it to http://domen.uninett.no/
~hta/linux/aero-faq.html.

Dell Latitude XPi

You’ll definitely want to do some homework before installing Linux on a Dell Latitude XPi, because it

http://www.cs.nmsu.edu/~pfeiffer/
http://domen.uninett.no/~hta/linux/aero-faq.html
http://domen.uninett.no/~hta/linux/aero-faq.html

contains some quirky hardware configurations. Larry Meadows (lfm@pgroup.com) has detailed his
experiences and posted it to the Web (http://www.cs.utexas.edu/users/kharker/linux-laptop/latitude.xpi.
html), and it’s included on the accompanying CD-ROM.

HP Omnibooks

Two brave souls have tried to install Linux on two popular Hewlett-Packard subnotebooks: the
Omnibook 600 and 5000. They report that it can be done (“Linux cannot be installed in the obvious way,
and not every peripheral works under Linux [at least not so far]. However, the dark rumors that have
spread across the Net are unwarranted: all the critical components work nicely. Some of the Omnibook’s
limitations might be fixed with further hacking and others can be worked around”), but it takes a lot of
effort and tweaking.” Their HOWTOs are on the accompanying CD-ROM; you can also find them at
http://www.cs.uiowa.edu/~mfleck/vision-html/omnibook.html and http://www.ens.fr/~dicosmo/Linux/
OmniBook5000.html.

IBM ThinkPad

Despite the ThinkPad’s reputation for being a quirky machine, Linux installs and runs pretty smoothly
on this line of IBM laptops (all things considered). However, the ease of installation and the actual
installation details themselves differ by model, and you can run into some problems if you’re unfamiliar
with your ThinkPad and the intricacies of both Linux and X Window/XFree86.

You can find excellent FAQs on the subject of Linux and IBM ThinkPads at http://peipa.essex.ac.uk/tp-
linux/tp-linux.html, http://reality.sgi.com/mende/linuxTP701/index.html, and http://www.iusd.iupui.edu/
~henslelf/thinkpad/index.html.

NEC Versa

Linux installs without a hitch on the NEC Versa laptop, but X needs some tweaking. For more details,
check out http://www.santafe.edu:80/~nelson/versa-linux/.

Tadpole P1000

Tadpole Technology makes a series of SPARC- and PC-compatible laptops. The P1000 series of laptops
are based on the Intel Pentium processor. They’ve been tested to work with Linux, but there are a slew
of installation and configuration details to wade through. You can find them at http://www.tadpole.com/
Support/online/linux.html.

TI Travelmate 5100

file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch01/lfm@pgroup.com
http://www.cs.utexas.edu/users/kharker/linux-laptop/latitude.xpi.html
http://www.cs.utexas.edu/users/kharker/linux-laptop/latitude.xpi.html
http://www.cs.uiowa.edu/~mfleck/vision-html/omnibook.html
http://www.ens.fr/~dicosmo/linux/omnibook5000.html
http://www.ens.fr/~dicosmo/linux/omnibook5000.html
http://peipa.essex.ac.uk/tp-linux/tp-linux.html
http://peipa.essex.ac.uk/tp-linux/tp-linux.html
http://reality.sgi.com/mende/linuxtp701/index.html
http://www.iusd.iupui.edu/~henslelf/thinkpad/index.html
http://www.iusd.iupui.edu/~henslelf/thinkpad/index.html
http://www.santafe.edu/~nelson/versa-linux/
http://www.tadpole.com/support/online/linux.html
http://www.tadpole.com/support/online/linux.html

A Web site at http://www.wri.com/~cwikla/ti5100.html details how to install Linux, including how to
make Linux peacefully coexist with Windows 95.

Toshiba T400CDT

Most of the information about this Toshiba model covers X Window configuration and some power-
management routines. You can see for yourself at http://terra.mpikg-teltow.mpg.de/~burger/T400CDT-
Linux.html.

Previous Table of Contents Next

http://www.wri.com/~cwikla/ti5100.html
http://terra.mpikg-teltow.mpg.de/~burger/t400cdt-linux.html
http://terra.mpikg-teltow.mpg.de/~burger/t400cdt-linux.html

-->

Previous Table of Contents Next

PCMCIA and Laptops

A separate package, Card Services, is used for PCMCIA support on laptops; this package is included on
the accompanying CD-ROM. We’ll cover the topic in more depth in Chapter 2 (including the
installation of Card Services), but for now, all you need to know is that all the common PCMCIA
controllers (including those built around chips from Databook, Intel, Cirrus, Ricoh, Vadem, and VLSI),
as well as custom controllers found in IBM and Toshiba laptops, are supported. In addition, the
PCMCIA-HOWTO reports that the package is used on desktop computer systems with PCMCIA card
adapters.

Be warned that the Motorola 6AHC05GA controller used in some Hyundai laptops and the proprietary
controller used in Hewlett-Packard Omnibook 600 subnotebooks are not supported.

Learning About PC Hardware

You’ve probably noticed references in this chapter to things like interrupts and IRQ settings. If you’re a
PC hack, you know what these nasty things mean. If you’re not a PC hack—you are in for a rude
awakening.

Simply put, the PC architecture assigns addresses to peripheral devices. If these addresses conflict, you
have problems. Some peripherals, such as network cards, need to be set to specific addresses, while
others don’t.

Our goal here isn’t to turn you into a hardware hack (and, quite honestly, discussions of interrupts and
IRQ settings really depress us), so we suggest checking into a more specifically angled PC hardware
book like Jim Aspinwall’s IRQ, DMA & I/O (MIS:PRESS). PC hardware doesn’t have to be
intimidating, but you should be prepared for a high level of detail if you start messing around with the
innards of your personal computer, especially if you’re a UNIX hack who doesn’t know much about PCs
in general. For your convenience, we list several good books on PC hardware in Appendix A.

Summary

This chapter outlined the hardware requirements for running Linux. Linux actually runs on a wide
assortment of PC hardware, which tends to be unusual for PC UNIX. Still, there are many places where
you may be tripped up by an oddball or misadvertised component, bringing your nascent Linux
experience to a screeching halt. The point of this chapter was to highlight any potential problem areas
and to give you some guidance if you’re thinking about buying a new or used computer expressly for

Linux and want to know what hardware to purchase.

In the next chapter, we’ll cover a typical Linux installation from beginning to end.

Previous Table of Contents Next

-->

Previous Table of Contents Next

Chapter 2
Installing Linux

This chapter covers:

• Preparing your PC for Linux
• Creating new partitions under DOS
• Creating new partitions under Linux
• Creating your bootdisk and rootdisk
• Booting Linux for installation
• Installing from the setup command
• Selecting the software to install
• Booting Linux with Loadlin
• Logging in the virgin Linux system
• Setting up additional users
• Adding hardware drivers with kernel modules
• Shutting down Linux

Before You Install Linux

Now that you have the perfect PC for running Linux, it’s time to prepare for the installation. No, you
can’t just install Linux from the accompanying CD-ROMs; you must first configure your hard drive and
create boot floppies. Neither step is particularly difficult. Here, we’ll cover how to create boot floppies
for booting Linux, followed by a discussion of preparing your hard drive for the Linux installation. The
actual installation process is:

• Create boot and root floppies
• Prepare your hard drive for installation
• Boot Linux from boot and root floppies
• Install Linux from the CD-ROM

In the following steps, we’re assuming you already have an Intel-based PC up and running with the MS-
DOS operating system, with the CD-ROM drive installed correctly, because you’ll need to copy some
files from the CD-ROM onto your hard drive. (On a PC, you’ll need to install special drivers to use the
CD-ROM drive; these drivers ship with the CD-ROM drive.) This doesn’t need to be the PC on which
you plan to install Linux—it just needs to be a PC with a DOS command line and access to the CD-
ROM drive.

NOTE: The procedures in this chapter are closely tied to the installation and configuration
routines found on the accompanying CD-ROMs. Other distributions of Linux are not exactly the
same. If you’re using a distribution of Linux other than the Slackware distribution on the
accompanying CD-ROMs, you can still follow along, keeping in mind that your exact steps may
differ.

Creating Boot and Root Floppies

Your first steps will be to create two floppy disks used to boot Linux: the boot and root diskettes. The
boot diskette is the diskette used (as the name implies) to boot the PC, while the root diskette contains a
set of Linux commands (actually, a complete mini-Linux system). Creating these disks is probably the
best way to install Linux, although it is possible to install Linux without using any floppy disks using
LOADLIN.EXE, a DOS program that loads Linux from an MS-DOS prompt. We’ll cover this option a
little later, but unless your floppy disk doesn’t work under Linux it is recommended that you install
using a bootdisk and a rootdisk.

Your next step is to determine which bootdisk and rootdisk images you’ll be using and writing the
images onto formatted floppy disks. Because selecting the disk images to use (especially the bootdisk)
can be a relatively large task, it warrants its own section.

Choosing Bootdisk and Rootdisk Images

Linux needs to know a lot about your PC’s hardware, and that knowledge begins the second you boot
the system. That’s why you need to put some thought into selecting your bootdisk and rootdisk images.

Before we go any further, we should explain what bootdisk and rootdisk images are. Linux needs to boot
from floppies initially, and it needs to know what sort of hardware it’s working with. When you boot
Linux for the first time, the information is contained on the bootdisk and rootdisk. To create a bootdisk
and a rootdisk, you need to select the proper image. You’ll then use the RAWRITE.EXE utility to copy
the image byte-for-byte to the diskette.

How do you select the proper image? The first step is to determine the disk size of your drive A:, which
you boot the system from. If you’re using a 3.5-inch disk drive as A:, you’ll need to grab an image from
the bootdsks.144 directory. (This is so labeled because the capacity of a 3.5-inch high-density floppy is
1.44 megabytes.) If you’re using a 5.25-inch disk drive to boot from, you’ll need to grab an image from
the bootdsks.12 directory. (This is so labeled because the capacity of a 5.25-inch high-density floppy is
1.2 megabytes.)

Previous Table of Contents Next

-->

Previous Table of Contents Next

If you look inside either directory, you’ll see a list of filenames ending in .I (for IDE) or .S (for SCSI).
(The filenames are the same in both directories; it doesn’t matter from this point which directory you
grab the image from.) Each image supports a different set of hardware; a list of the files and supported
hardware is in Tables 2.1 (for IDE bootdisks) and 2.2 (for SCSI bootdisks).

Table 2.1Linux IDE Bootdisks and Supported Hardware

Filename Supported Hardware

aztech.i CD-ROM drives: Aztech CDA268-01A, Orchid CD-3110, Okano/Wearnes
CDD110, Conrad TXC, CyCDROM CR520, CR540

bare.i IDE hard-drive only

bareapm.i IDE hard-drive plus advanced power management BIOS support (for
laptops).

barepnp.i IDE hard-drive plus experimental plug-and-play BIOS support.

cdu31a.i Sony CDU31/33a CD-ROM

cdu535.i Sony CDU531/535 CD-ROM

cm206.i Philips/LMS cm206 CD-ROM with cm260 adapter card

fat32.i Like bare.i, with experimental FAT32 support.

goldstar.i Goldstar R420 CD-ROM (sometimes sold in a Reveal Multimedia Kit)

mcd.i Non-IDE Mitsumi CD-ROM

mcdx.i Improved non-IDE Mitsumi CD-ROM support

net.i Ethernet support

optics.i Optics Storage 8000 AT CD-ROM (know as the “Dolphin” drive)

sanyo.i Sanyo CDR-H94A CD-ROM

sbpcd.i Matsushita, Kotobuki, Panasonic, Creative Labs (SoundBlaster), Longshine,
and TEAC non-IDE CD-ROM

xt.i MFM hard drive

All IDE bootdisks support IDE hard drives and CD-ROM drives, plus additional support listed in table.

Table 2.2Linux SCSI Bootdisks and Support Hardware

Filename Supported Hardware

7000fast.s Western Digital 7000FASST SCSI

advansys.s AdvanSys SCSI support

aha152x.s Adaptec 152x SCSI

aha1542.s Adaptec 1542 SCSI

aha1740.s Adaptec 1740 SCSI

aha2x4x.s Adaptec AIC7xxx SCSI (including AHA-274x, AHA-2842, AHA-2940,
AHA-2940W, AHA-2940U, AHA-2940UW, AHA-2944D, AHA-2944WD,
AHA-3940, AHA-3940W, AHA-3985, AHA-3985W)

am53c974.s AMD AM53/79C974 SCSI

aztech.s All supported SCSI controllers, plus CD-ROM support for Aztech CDA268-
01A, Orchid CD-3110, Okano/Wearnes CDD110, Conrad TXC, CyCDROM
CR520, CR540

buslogic.s Buslogic MultiMaster SCSI

cdu31a.s All supported SCSI controllers, plus CD-ROM support for Sony CDU31/33a

cdu535.s All supported SCSI controllers, plus CD-ROM support for Sony
CDU531/535

cm206.s All supported SCSI controllers, plus Philips/LMS cm206 CD-ROM with
cm260 adapter card

dtc3280.s DTC (Data Technology Corp.) 3180/3280 SCSI

eata_dma.s DPT EATA-DMA SCSI (boards such as PM2011, PM2021, PM2041,
PM3021, PM2012B, PM2022, PM2122, PM2322, PM2042, PM3122,
PM3222, PM3332, PM2024, PM2124, PM2044, PM2144, PM3224,
PM3334)

eata_isa.s DPT EATA-ISA/EISA SCSI support (boards such as PM2011B/9X,
PM2021A/9X, PM2012A, PM2012B, PM2022A/9X, PM2122A/9X,
PM2322A/9X)

eata_pio.s DPT EATA-PIO SCSI (PM2001 and PM2012A)

fat32.s Like scsi.s, but with experimental FAT32 support.

fdomain.s Future Domain TMC-16x0 SCSI

goldstar.s All supported SCSI controllers, plus Goldstar R420 CD-ROM (sometimes
sold in a Reveal Multimedia Kit)

in2000.s Always IN2000 SCSI

iomega.s IOMEGA PPA3 parallel-port SCSI (also supports parallel-port version of the
ZIP drive)

mcd.s All supported SCSI controllers, plus standard non-IDE Mitsumi CD-ROM

mcdx.s All supported SCSI controllers, plus enhanced non-IDE Mitsumi CD-ROM

n53c406a.s NCR 53c406a SCSI

n_5380.s NCR 5380 and 53c400 SCSI

n_53c7xx.s NCR 53c7xx, 53c8xx SCSI (most NCR PCI SCSI controllers usethis driver)

optics.s All supported SCSI controllers, plus support for the Optics Storage 8000 AT
CD-ROM (the “Dolphin” drive)

pas16.s Pro Audio Spectrum/Studio 16 SCSI

qlog_fas.s ISA/VLB/PCMCIA Qlogic FastSCSI! (also supports Control Concepts SCSI
cards based on the Qlogic FASXXX chip)

qlog_isp.s Supports all Qlogic PCI SCSI controllers, except the PCI-basic, which is
supported by the AMD SCSI driver

sanyo.s All supported SCSI controllers, plus Sanyo CDR-H94A CD-ROM

sbpcd.s All supported SCSI controllers, plus Matsushita, Kotobuki, Panasonic,
Creative Labs (SoundBlaster), Longshine, and TEAC non-IDE CD-ROMs

scsi.s All supported SCSI controllers.

scsipnp.s
All supported SCSI controllers, plus experimental plug-and-play card
support.

scsinet.s All supported SCSI controllers, plus full Ethernet

seagate.s Seagate ST01/ST02 and Future Domain TMC-885/950 SCSI

trantor.s Trantor T128/T128F/T228 SCSI

ultrastr.s UltraStor 14F, 24F, and 34F SCSI

ustor14f.s UltraStor 14F and 34F SCSI

Previous Table of Contents Next

-->

Previous Table of Contents Next

All SCSI bootdisks feature full IDE hard-drive and CD-ROM support, plus additional drivers listed in
table.

NOTE: All of these images support UMSDOS, if you prefer this method of installation.
UMSDOS will be covered later in this chapter in the section, “Should You Use UMSDOS?”

You’ll need one of the images listed to get Linux started on your system so that you can install it.
Because of the possibility of collisions between the various Linux drivers, several bootkernel disk
images are provided. You should use the one with the least drivers possible to maximize your chances of
success. All of these disks support UMSDOS.

At first glance, Tables 2.1 and 2.2 can be a little confusing. To clear things up, Table 2.3 contains a
handy little guide where you can match installation medium and hard disk format to the preferred image
(in bold).

Table 2.3Chart for Choosing Bootdisk Images

Installation Medium IDE Destination SCSI Destination
MFM
Destination

Hard drive bare.i Use a SCSI controller
bootdisk from the list
following the table.

xt.i

SCSI CD-ROM Use a SCSI controller
bootdisk from the list
following the table.

Use a SCSI controller
bootdisk from the list
following the table

-

IDE/ATAPI CDROM bare.i Use a SCSI controller
bootdisk from the list
following the table.

Aztech, Orchid, Okano,
Wearnes, Conrad, CyCD
ROM non-IDE CD-ROM

aztech.i aztech.s

Sony CDU31a, Sony
CDU33a CD-ROM

cdu31a.i cdu31a.s

Sony CDU531, Sony
CDU535 CD-ROM

cdu535.i cdu535.s

Philips/LMS cm206 CD-
ROM

cm206.i cm206.s

Goldstar R420 CD-ROM goldstar.i goldstar.s

Mitsumi non-IDE CD-ROM mcdx.i, mcd.i mcdx.s, mcd.i

Optics Storage 8000 AT CD-
ROM (“Dolphin”)

optics.i optics.s

Sanyo CDR-H94A CD-ROM sanyo.i sanyo.s

Matsushita, Kotobuki,
Panasonic, Creative Labs
(SoundBlaster), Longshine,
and TEAC non-IDE CD-
ROM

sbpcd.i sbpcd.s

NFS net.i scsinet.i

Tape bare.i (for floppy tape); for
SCSI tape, use a SCSI
controller bootdisk from the
list following the table

Use a SCSI controller
bootdisk from the list
following the table

xt.i (for
floppy tape)

The SCSI controller bootdisks are:

7000fast.s, advansys.s, aha152x.s, aha1542.s, aha1740.s, aha2x4x.s, am53c974.s, buslogic.s, dtc3280.
s, eata_dma.s, eata_isa.s, eata_pio.s, fdomain.s, in2000.s, iomega.s, n53c406a.s, n_5380.s, n_53c7xx.
s, pas16.s, qlog_fas.s, qlog_isp.s, seagate.s, trantor.s, ultrastr.s, ustor14f.s

Choosing the Proper Rootdisk Image

After selecting the proper bootdisk, you’ll need to select the proper rootdisk. The selections are more
limited, so you won’t have to put much work into this selection. The rootdisks are stored in the
ROOTDSKS directory and will work with either 3.5-inch or 5.25-inch high-density diskettes.

Your rootdisk image selections are listed in Table 2.4.

Table 2.4Rootdisk Selections

Filename Purpose

COLOR.GZ This image contains a full-screen color install program and should be
considered the default rootdisk image. This version of the install system has
some known bugs, however; in particular, it is not forgiving of extra
keystrokes entered between screens. This is probably the file you’ll want to
use.

UMSDOS.GZ This is similar to the color disk, but it installs using UMSDOS, a filesystem
that allows you to install Linux into a directory on an existing MS-DOS
partition. This filesystem is not as fast as a native Linux filesystem, but it
works, and you don’t have to repartition your hard drive.

TEXT.GZ This is a text-based version of the install program derived from scripts used
in previous Slackware releases.

TAPE.GZ This image is designed to support installation from tape. See the section
“Installing from Tape” later in this chapter.

PCMCIA.GZ Similiar to the color disk, but used for installing on a laptop’s internal hard
drive through a PCMCIA card (SCSI, ethernet, or CD_ROM drive).

NOTE: You’ll notice that these filenames end with the .GZ extension; this indicates that the files
have been compressed with GNU zip. Some older distributions of Linux required that the files be
decompressed prior to use, but this is not necessary anymore. The kernel on the bootdisk will
detect that the rootdisk is compressed and will automatically decompress the disk as it is loaded
into RAM. This allows the use of a 1.44MB uncompressed image size for both 1.44MB and
1.2MB floppy drives.

Most users will use the COLOR.GZ rootdisk image.

Previous Table of Contents Next

-->

Previous Table of Contents Next

Should You Use UMSDOS?

The UMSDOS filesystem allows you to install Linux in an MS-DOS directory on an existing DOS
partition. The advantage of this is that you won’t need to reformat or repartition your existing system.
There are two disadvantages to using this system, however.

First, the UMSDOS system is somewhat slower than a native Linux filesystem. This is especially true of
machines with 8 megabytes of memory or less—UMSDOS is virtually unusable on a 4MB machine.
The second disadvantage of UMSDOS has to do with a shortcoming of the MS-DOS FAT filesystem.
MS-DOS allocates space for files in units called clusters. A cluster is usually 4K or 8K in size. This
means that the smallest file that can be created on a UMSDOS filesystem takes up a full cluster (4096+
bytes), even if the file is much smaller. Linux contains many such small files, including symbolic links
and device entries. As a result, installing with UMSDOS may require more drive space than installing
with a native Linux filesystem.

Now that you’ve chosen your bootdisk and rootdisk images, it’s time to actually create the bootdisk and
rootdisk.

Creating the Diskettes

For this step, you’ll need two high-density diskettes. It doesn’t matter what’s on the diskettes, but they
must be formatted. Be warned that this process will completely wipe out anything currently stored on the
diskettes. You might also wish to format a third high-density floppy disk at this time for the installation
program to use later when it’s preparing your system bootdisk.

NOTE: As you’ll recall from an earlier note, the images for the rootdisks do not need to be
decompressed; the kernel will automatically decompress them as they are loaded into memory.

In these examples, we’ll be using the BARE.I and COLOR.GZ images. If you’re using a different set
of images, just substitute those filenames instead.

NOTE: The procedures in this section do not need to be done on the computer you’re planning
to use as your Linux workstation. You can create the files on a different PC or even use a UNIX
workstation to create the floppies. On a UNIX workstation the dd command is used to write an
image to the floppy drive. When using dd on Suns, and possibly on some other UNIX

workstations, you must provide an approximate block size. Here’s an example:

dd if=bare.i of=/dev/(rdfd0, rdf0c, fd0, or whatever) obs=18k

Now it’s time to make your bootdisk. First, move into the bootdisks.144 (or bootdisks.12 if you use a
1.2MB floppy drive) directory on your Slackware CD-ROM.

Assuming your CD-ROM drive has the drive letter E: assigned to it, you’d move into the directory like
this:

 C:\> E:

 E:\> CD BOOTDSKS.144

 E:\BOOTDSKS.144>

Now you’ll actually create the bootdisk. Put the eventual bootdisk diskette in drive A: and type the
following command:

 E:\> RAWRITE BARE.I A:

This will use the RAWRITE command (there’s a copy of this in each of the BOOTDSKS and
ROOTDSKS directories) to copy the BARE.I disk image to the A: floppy drive. As it writes,
RAWRITE will give you a status report. After it’s finished writing the bootdisk, remove the disk from
the drive and put it aside.

Then insert another formatted high-density floppy and use the same procedure to write the rootdisk. In
this case, you’ll need to move into the ROOTDSKS directory and write the COLOR.GZ image using
RAWRITE:

 E:\BOOTDSKS.144> cd \ROOTDSKS

 E:\ROOTDSKS> RAWRITE COLOR.GZ A:

There’s really not a lot to the RAWRITE command; the only things that could trip you up would be if
you’re not using a high-density diskette or if the diskette is flawed.

Previous Table of Contents Next

-->

Previous Table of Contents Next

Preparing Your Hard Drive for Linux

Now that you’ve created your boot diskettes, it’s time to prepare your hard drive for Linux. In order to
install Linux, you must create a Linux partition on your hard drive. You should also consider creating a
DOS partition on your hard drive in addition to the Linux partition—a step that’s not necessary, but one
that we follow for many reasons (which we’ll explain later).

NOTE: If you’re a UNIX workstation user, you’re not going to be familiar with some of the
concepts and operations we describe here. If, after reading this section, you’re still a little fuzzy
about the IBM PC and its many quirks, you may want to head to your local bookstore and
purchase a good guide to the PC.

Intel-based PCs have the ability to divide a hard drive into partitions. This is why you may have several
different drive letters (C:, D:, E:), even though you have only one physical hard drive. (This dates from
early versions of MS-DOS, which lacked the ability to recognize hard disk partitions larger than 33
megabytes. MS-DOS 4.0 was the first version to do away with this restriction.) The ability to create
partitions also yields a bonus (as far as a Linux user is concerned): You can install different operating
systems on a hard drive, and these different operating systems won’t conflict. As a matter of fact, they
can coexist quite nicely; you can configure Linux to give you a choice of operating systems when you
boot your PC, and you can access DOS-formatted partitions from within Linux. Linux is relatively good
about coexisting with other operating systems—primarily, DOS, Windows, Windows 95, and OS/2.
Linux requires at least one partition for itself.

You must physically create partitions, as Intel-based PCs need to know what type of operating system is
residing on a portion of the hard drive. If you’ve purchased your PC from a clone vendor or superstore
and started using it immediately, chances are that you’ve treated the hard disk as one contiguous drive,
without partitioning it into smaller drives. In a perfect world, of course. you’re installing Linux on a
brand-new system, and there’s little of importance currently installed on your hard disk. This is the route
we try to follow, because there’s little chance of doing damage to anything important.

However, if you’ve been using your PC for a while, you’ve probably accumulated software, data files,
and configurations that you’re loathe to give up. In this case, you’ll want to retain as much of the DOS
configuration as possible while making room for Linux. There are two routes you can take:

• Using the FIPS utility to partition the hard drive without (theoretically) destroying the existing
data.

• Backing up the DOS data, creating the new Linux and DOS partitions, and then reinstalling the
backup. (This is our preferred method.) You’ll need to make sure that the new partition is large
enough to contain all the data from the old DOS partition, of course.

In either case, you’ll want to first make a backup of your hard disk, on either floppy disks or some tape-
based medium (Bernoulli drive, SyQuest tape, DAT tape). Depending on your system configuration,
you’ll either want to back up everything or just those directories that can’t easily be reinstalled from
floppy or CD-ROM. (We find that a system cleansing is good every once in a while, so we tend to back
up data and irreplaceable configuration files but reinstall applications from scratch.) Yes, we know
backing up your hard drive is a pain (and we probably don’t do it as often as we should), but you should
make a backup every time you do something to your hard drive that has the potential to destroy data.

Using FIPS to Divide Your Hard Drive

After you make your backup, you’ll need to decide which route to take. The FIPS utility described
earlier is stored in install fips on the first accompanying CD-ROM as FIPS.EXE; the guide to using
FIPS is stored in the same location in FIPS.DOC. (If you plan on using the FIPS utility, we strongly
advise you to read this file a couple of times, as it contains far more information and detail than is given
here.)

Basically, FIPS works by creating a new partition on the physical end of the hard drive. Before the
FIPS utility does this, you must first defragment your hard drive. A word about how a PC’s hard drive
stores data is in order here.

When a PC writes to a hard disk, it writes to clusters on the disk. Generally speaking, this writing is
done sequentially; the first clusters appear at the physical beginning of the disk. As you use the system,
you inevitably write more and more to the hard drive, and you probably delete some data as well. As you
delete the data, the clusters it occupied are freed; at the same time, new data is written to the end of the
disk. Any hard disk that’s been in use for a while will have data scattered throughout the physical drive.
(This is why hard drives slow down when they fill with data; the drive head must physically hop around
the drive to retrieve scattered data.)

When you defragment your hard drive, you’re replacing the freed clusters at the beginning of the drive
with data from the end of the drive. While not purely sequential, your data is all crammed at the
beginning of the hard drive. This improves disk performance—because your data is physically closer
together, the drive head spends less time retrieving data that was scattered in the past.

NOTE: Newer versions of MS-DOS, and PC-DOS, (that is, versions 6.0 and better) contain a
defragmenting utility. (Check your operating system documentation for specifics, as the utilities
differ.) If you’re using an older version of MS-DOS, you’ll need to use a general-purpose utility
package (such as the Norton Utilities or PC Tools Deluxe) to defragment your hard drive.

The FIPS utility takes advantage of the fact that the data is crammed at the beginning of the hard drive.
It allows you to create a point past the end of the DOS data to begin the new Linux partition (if you use
this method, remember to leave room for more data in the DOS partition!).

Previous Table of Contents Next

-->

Previous Table of Contents Next

We’re not going to spend a lot of time on FIPS here, because the documentation on the accompanying
CD-ROM more than adequately explains how FIPS works, its limitations, and the exact procedures for
dividing a hard drive. The only caveat we offer is that you should know a little about how PCs deal with
hard drive partitions before using FIPS; if you’re a PC neophyte, we suggest you follow the steps
detailed in the next section.

NOTE: FIPS will not work with OS/2. The details are contained in the FIPS.DOC file. You
should run FIPS from DOS rather than from a multitasking environment like Windows or
DESQview. FIPS will also not work with FAT32, a new filesystem Microsoft has included in
some newer Windows95 systems. If you’re unlucky enough to have this, you’ll either have to
erase your DOS partition to make room for Linux, or add a new hard drive.

Using DOS Utilities to Divide Your Hard Drive

The second method to prepare your hard drive for Linux involves various DOS utilities, which you’ll
use to create new partitions and configure a floppy diskette you can use to boot your PC with DOS.

The first step involves creating a DOS boot diskette. (You’ve already created a Linux boot diskette; the
two are different.) This is a rather simple procedure, involving the following command line:

 C:> format /s A:

where A: is your boot drive. This command formats a floppy disk and adds the system files
(COMMAND.COM and hidden files IO.SYS and MSDOS.SYS) needed to boot DOS from the floppy.
If you install a DOS partition, booting from this diskette will give you access to that partition (which
will appear as drive C:). It will not, however, give you access to the CD-ROM until you install the CD-
ROM drivers on the DOS boot diskette.

NOTE: When you installed OS/2, it should have directed you to create an emergency boot
floppy. You may need this diskette if something goes wrong in the installation.

After doing this, you’ll need to copy some additional utilities to the floppy. You’ll need to be fairly

selective about what files you copy to the floppy, because the sum of all DOS .EXE and .COM files
(essentially, the utility files) in a typical DOS installation won’t fit on a floppy disk. You’ll need to copy
the FDISK.EXE and FORMAT.COM files to the floppy drive with the following command lines:

 C:> copy \DOS\FDISK.EXE A:

 1 file(s) copied

 C:> copy \DOS\FORMAT.COM A:

 1 file(s) copied

NOTE: You may also want to copy onto a floppy the files that restore your system backup, if
you used operating system utilities to create the backup. Check your documentation for the
specific files; they differ between operating systems.

What are FDISK and FORMAT?

We’ve told you to copy FDISK.EXE and FORMAT.COM onto the floppy for future use, we should
take some time to explain what they do.

FDISK.EXE is the program that creates MS-DOS partitions. Every operating system has a program that
does something similar (you’ll use the Linux fdisk command later in this process). You’ll need to use
the partitioning software specific to the operating system; for example, you can’t use FDISK to create
Linux or OS/2 partitions. FDISK.EXE works very simply: You delete an existing partition or partitions,
and you create new partitions in their place.

Creating a partition merely leaves a portion of your hard disk devoted to the particular operating system.
After you’ve used FDISK.EXE to create a new DOS partition, you’ll use the FORMAT.COM program
to format that partition for use under MS-DOS. If you don’t format the MS-DOS partition, the operating
system won’t be able to recognize it.

Previous Table of Contents Next

-->

Previous Table of Contents Next

Using the DOS FDISK Utility

Now that you’ve created the system backup and a boot diskette, it’s time to destroy the data on your
hard drive with the FDISK utility. Destroy? Yup. The act of creating new partitions is by definition a
destructive act. You must destroy the existing partitions and the records of the data contained therein in
order to create the new partitions.

NOTE: You can use FDISK if your system has more than one hard drive. In this case, you’ll
want to make sure that you’re working on the correct hard drive. FDISK does not use the normal
DOS drive representations (C:, D:, E:, etc.); rather, FDISK uses numerals, such as 1 or 2.

Begin by booting your PC from the floppy disk you created in the previous section. This “vanilla” boot
will ask for today’s date and time (ignore both; they don’t matter) and then give you the following
command line:

 A>

You’re now ready to run the DOS FDISK utility:

 A> fdisk

There are no command-line parameters to FDISK.

The program loads and displays something like the screen shown in Figure 2.1.

 MS-DOS Version 5.00

 Fixed Disk Setup Program

 (C) Copyright Microsoft 1983 - 1991

 FDISK OPTIONS

 Current fixed disk drive: 1

 Choose one of the following:

 1. Create DOS partition or Logical DOS Drive

 2. Set active partition

 3. Delete partition or Logical DOS Drive

 4. Display partition information

 Enter choice: [1]

 Press Esc to exit FDISK

Figure 2.1 The opening screen to the FDISK utility.

NOTE: The figures is this section are for a specific version of MS-DOS, 5.00. However, most
versions of MS-DOS follow the conventions shown and explained here. If the choices on your
system aren’t exactly like the choices here, read through them carefully and use the similar
choice. Remember: You are essentially deleting a partition and creating a new one in this
procedure.

At this point you’ll need to delete the existing partition, so you’ll choose 3. (If you’re not sure about the
existing partitions on your disk—or whether you’re even working on the correct disk if you have more

than one—select 4.)

NOTE: When using the FDISK utility, you’ll see references to primary and extended partitions,
as well as to logical drives. Here an explanation:

• The primary partition is the partition containing the files (IO.SYS, MSDOS.SYS, and
COMMAND.COM) needed to boot MS-DOS. In essence, this is your C: drive. The
primary partition cannot be divided into other logical drives.
• The extended partition or partitions do not contain these boot files. An extended
partition can exist as its own logical drive (such as D: or E:) or be divided into additional
logical drives.
• The logical drive is the portion of a partition assigned a drive letter. For example, an
extended partition can be divided into up to 23 logical drives (A: and B: are reserved for
floppies, and C: is reserved for the primary partition, leaving 23 letters).

Additionally, the non-DOS partition is for another operating system, such as Linux.

Chances are that you won’t need to deal with more than a primary drive or an extended drive.

After selecting 3, you’ll see the screen shown in Figure 2.2.

 Delete DOS Partition or Logical DOS Drive

 Current fixed disk drive: 1

 Choose one of the following:

 1. Delete Primary DOS Partition

 2. Delete Extended DOS Partition

 3. Delete Logical DOS Drive(s) in the Extended DOS Partition

 4. Delete Non-DOS Partition

 Enter choice: []

 Press Esc to return to FDISK Options

Figure 2.2 The delete screen for FDISK.

What you do at this point depends on how your hard drive has been configured. If you have primary and
extended partitions, delete them. If you have only a primary drive, delete it. FDISK will confirm that
you do indeed want to delete a partition. This is your last chance to chicken out and check the DOS
partition one more time before actually wiping it out.

After deleting a partition, you’ll need to create a new DOS partition—a choice that’s listed in Figure 2.1
as option 1. After choosing 1, you’ll be shown a screen like that in Figure 2.3.

 Create DOS Partition or Logical DOS Drive

 Current fixed disk drive: 1

 Choose one of the following:

 1. Create Primary DOS Partition

 2. Create Extended DOS Partition

 3. Create Logical DOS Drive(s) in the Extended DOS Partition

 Enter choice: [1]

 Press Esc to return to FDISK Options

Figure 2.3 Creating a new partition with FDISK.

Of course, you’ll want to create a new primary partition; this is the partition that will be used for DOS.

The next thing you’ll need to decide is how much of the hard drive to devote to DOS. There are no hard-
and-fast rules concerning partition sizes. Obviously, you’ll first need to think about how much of a
priority Linux is—if you plan on running Linux a lot, you should give it a lot of hard disk space. If you
plan on using it as much as DOS, you should equalize the two installations somewhat, keeping in mind
that Linux will require far more hard disk space than DOS. And if you plan on using Microsoft
Windows along with DOS and Linux, you should assume that Windows will take up as much hard disk
space as it can get.

Previous Table of Contents Next

-->

Previous Table of Contents Next

Our only advice: Don’t be stingy when it comes to Linux hard disk allocation, and remember that Linux
applications tend to eat up a lot of disk space. It’s not unusual to run across freely available binaries on
the Internet that are more than a megabyte (such as the popular Web browser NCSA Mosaic for X
Window), and in time these applications add up. If you’re really careful during installation and you
install only the applications you need, you can keep a Linux installation down to 100 megabytes or so.
Realistically, however, by the time you include everything worth having, you’ll be up to 275 megabytes
or so. If you only have a 325MB hard disk, you’ll obviously need to keep the DOS partition to 10 or so
megabytes.

Don’t bother with any other partitions—at least for Linux usage. You probably won’t want to create a
logical DOS drive; if you do, you can’t use it for a Linux installation, as all Linux partitions must be
created through Linux later in the installation process.

After deciding how much hard disk space to give to DOS, you’ll want to exit FDISK. Go ahead and
make the DOS partition active (this means that you can boot from it later, which you’ll want to do; you
can have multiple partitions able to boot).

After quitting FDISK, reboot the system, leaving the DOS diskette in drive A:. You’ll now want to
format drive C:—at least the DOS portion of it—with the DOS FORMAT command:

 A> FORMAT /S C:

This command formats the DOS partition with the core of the operating system (the COMMAND.
COM, IO.SYS, and MSDOS.SYS files). The FORMAT command makes sure that you want to go
ahead with the format (this is to make sure that DOS neophytes don’t accidentally format a partition that
contains valuable information); answer in the affirmative when asked if you want to proceed with the
format.

NOTE: You can use any version of DOS for these steps, as long as it’s DOS 4.0 or better. DOS
doesn’t care if you format the hard drive with one version of DOS and install another version later.

Now that you’ve prepared the DOS side of your hard disk (and after looking back you realize that it’s a
lot easier than the extended verbiage in the previous sections made it seem), it’s time to boot Linux.

FDISK and OS/2

When preparing a PC for use with OS/2 and Linux, you’ll need to use a slightly different route for
preparing your hard drive.

OS/2 has trouble with partitions not originally created with its FDISK utility. Therefore, you must start
by partitioning your hard disk with the OS/2 FDISK utility (keeping in mind that OS/2 needs more than
35 megabytes of hard disk space to run). Then you must create the Linux partition with the OS/2 FDISK
utility—marked as another OS/2 partition—and make that a potential boot partition using OS/2’s Boot
Manager. (OS/2 gives you the ability to select a boot partition every time you boot the PC.)

You’ll then boot your PC with the instructions given next. However, later in the process you’ll do
something a little different when it comes to the Linux fdisk command (which we’ll cover at that point
in the installation process).

Booting Linux with the Bootdisk

Obviously, you boot Linux with the bootdisk you prepared earlier. Put it in your boot drive and restart
your PC with a cold or warm boot (it doesn’t matter).

Initially your PC will do the things that it normally does when it boots, such as check the memory and
run through the BIOS. However, the word LILO will appear on your screen, followed by a full screen
that begins with the line:

 Welcome to the Slackware Linux 3.2.0 bootkernel disk!

You’ll also see some verbiage about passing parameters along to the kernel; most users won’t need to
pass along any additional parameters.

WARNING: The exceptions are some IBM PS/1, ValuePoint, and ThinkPad users, as Linux will
not recognize the hard disks used by these machines. These IBM computers don’t store the hard
disk information in the CMOS, which is checked by Linux upon booting up. Because Linux lacks
this information, it assumes there’s no hard drive present. You must pass along the hard disk
geometry at this point.

If you are using one of these machines, you cannot use the bare bootdisk; instead, you should use
scsi. When you boot using this bootdisk, you should press down the left Shift key, which gives
you a menu where you can specify the geometry of the hard disk. Where do you get this
information? From the drive’s installation guide or by checking the machine’s internal setup.

Most users will be able to press the Enter key and proceed to load the Linux RAM disk.

NOTE: There are some cases where LILO appears on the screen and the system hangs or rows of
0s and 1s cascade down the screen. In these cases, you are probably using the wrong bootdisk for
your PC. The first thing to do is to create a few alternate bootdisks and try them; if the problem
persists, scan the Usenet newsgroups and the FTP archives (see Appendix A for details) to make
sure that your PC and its peripherals are indeed supported by Linux.

The bootdisk runs through your system hardware, noting which hard drives and peripherals are present
and scouting out other salient details about your PC. It’s at this point that Linux discovers any problems
with your PC, and if you have problems installing or using Linux, it’s a place you’ll want to check. (The
same information is displayed and gathered every time you boot.)

If there are no problems, you can put in your rootdisk and press Enter. A core of the Linux operating
system is then copied to the RAM disk, which then gives you access to some Linux commands,
including the important fdisk command. The installation process instructs you to login the Linux system
as root:

 slackware login : root

There will be no password required.

WARNING: If you’re asked for a password, it means you don’t have enough memory to install.

NOTE: Before you proceed, carefully look through the instructions on the screen. There are a
few notes that may apply to your specific computing situation.

Previous Table of Contents Next

-->

Previous Table of Contents Next

Linux and Hard Disk Names

After logging in, you’ll want to directly run the fdisk command (ignoring what the screen instructions
say about the setup command). The fdisk command assumes that the first IDE drive is the default drive.
If you plan on installing Linux on another drive, you’ll need to specify that on the command line. Table
2.5 lists the hard disk device names.

Table 2.5Linux Hard Disk Device Names

Name Meaning

/dev/hda First IDE hard drive

/dev/hdb Second IDE hard drive

/dev/sda First SCSI hard drive

/dev/sdb Second SCSI hard drive

/dev/fd0 First floppy drive (A:)

/dev/fd1 Second floppy drive (B:)

Note the pattern in Table 2.5? In addition, Linux allows you to specify the partitions in the device
names. For example, the first primary partition on the first IDE drive would be known as /dev/hda1, the
second primary partition on the first IDE drive would be known as /dev/hda2, and so on. If you’re
installing logical partitions, the first logical partition would appear as /dev/hda5, the second logical
partition would appear as /dev/hda6, and so on.

NOTE: The files representing these devices will end up in the directory /dev.

To run fdisk on the second SCSI hard drive, you’d use the following command line:

 # fdisk /dev/sdb

Most of you (most PCs are sold with IDE drives) will be told that Linux is using the first hard drive as

the default. When you press m for a list of options, you’ll see the following listing:

 Command action

 a toggle a bootable flag

 c toggle the dos compatibility flag

 d delete a partition

 l list known partition types

 m print this menu

 n add a new partition

 p print the partition table

 q quit without saving changes

 t change a partition's system id

 u change display/entry units

 v verify the partition table

 w write table to disk and exit

 x extra functionality (experts only)

There are really only three options you’ll ever use, unless you run into some esoteric configurations:

• d, which deletes a current partition. This will work on non-Linux partitions.
• n, which creates a new partition.
• p, which prints a rundown of the current partition table. This will list non-Linux partitions as
well.

WARNING: Linux allows you to make your hard disk configuration (and any configuration) as
complex as you want it to be. Our philosophy is to keep it as simple as possible; unless you have a
real need for multiple partitions and the like, just keep to the basics—a DOS partition, a Linux

partition, and perhaps a partition for an additional operating system (like OS/2) if you like.

Some argue that by creating multiple Linux partitions, you’ll be able to recover more easily if
something happens to the boot partition. (Damage to one partition doesn’t automatically mean
that all the partitions are damaged.) However, if you’re making frequent backups of important
files (mostly data and configuration files), you’ll have a more reliable setup. If there’s damage to
the PC’s File Allocation Table (FAT), you’ll have problems with all your partitions.

If you select p, you’ll see the following:

 Device Boot Begin Start End Blocks Id System

/dev/hda1 * 1 1 63 20762+ 4 DOS 16-bit (32M)

This is the DOS partition you created in the previous sections.

Before you actually create the Linux partition, you should decide if you want to install a swap partition.

Previous Table of Contents Next

-->

Previous Table of Contents Next

Linux and a Swap Disk

If you are using a PC with 4 megabytes of RAM, you may want to set up a swap partition. This partition
is treated by the system as extended RAM; if you run low on memory (and with 4 megabytes of RAM,
you’re guaranteed to), Linux can treat this hard disk section as RAM, or virtual memory. You’ll take a
performance hit, as a hard disk will always be slower than real RAM, and you’ll have the joy of
watching your hard disk churn furiously when you try to use a few applications. However, a swap
partition can be used only for swap space by Linux; it can’t be used for any other storage. Therefore, you
need to weigh your RAM needs versus your hard disk storage needs, keeping in mind that Linux should
have as much hard disk territory for storage as possible.

You may also want to consider a swap partition if you have more than 4 megabytes of RAM. We’ve
found that XFree86 is a little tight when running under only 8 megabytes of RAM, and some swap space
can’t hurt, especially if you have a very large hard disk. (XFree86 won’t tell you that it’s low on RAM;
it will simply refuse to do anything, such as failing to load an application.) Some Linux experts
recommend that you have 16 megabytes of virtual memory. If you have only 8 megabytes of RAM, this
would mean that you would want to set up at least an 8MB swap partition.

If you do want to create a swap partition, read on. If you don’t, you can skip to the next section,
“Creating the Main Linux Partition.”

Your first move is to create a swap partition with the fdisk command. You’ll need to decide how large
to make this partition. That will depend on how much free space you think you can give up on your hard
drive. For the purposes of this chapter, we’ll devote 10 megabytes to swap space.

Run the fdisk command and choose the n option, for creating a new partition. You’ll see the following:

 Command action

 e extended

 p primary partition (1-4)

Type p, and enter the partition number. If you’ve already installed a DOS or OS/2 partition, you’ll need
to select the number 2, as partition number 1 is already is use:

 Partition number (1-4): 2

You’ll then be asked where to place the partition and how large to make it. Generally speaking, you’ll
want to place the partition immediately after the previous partition:

 First cylinder (64-1010): 64

Your numbers will undoubtedly be different. The point here is that fdisk automatically lists the first
unassigned cylinder here (in this case, it was cylinder 64), and you should go with that number.

You’ll then be asked how large you want to make the partition:

 Last cylinder or +size or +sizeM or +sizeK (64-1010): +10M

Because we’re not into figuring out how many cylinders or kilobytes it would take to make up 10
megabytes, we use the easy way out and specify 10 megabytes directly as +10M.

NOTE: This won’t apply to most users, but Linux doesn’t do very well if it’s installed as a boot
partition on cylinder 1023 or above. (This occurs with very large hard drives—1 gigabyte or
larger.) This has nothing to do with Linux, but rather with the limitations in the PC’s BIOS. Thus,
you should avoid installing the Linux boot partition on a partition containing this cylinder or
higher.

Fdisk then creates the partition. To make sure that everything went correctly, type p to see a list of the
current partitions:

 Device Boot Begin Start End Blocks Id System

/dev/hda1 * 1 1 63 20762+ 4 DOS 16-bit (32M)

/dev/hda2 63 64 95 10560 83 Linux native

NOTE: The number of blocks listed here will be handy when you actually make this partition a
swap partition. Jot it down.

Fdisk then gives you its command prompt; type w and exit.

NOTE: You may notice that the hard disk is pretty quiet when you’re making all these changes
to the partition. The fdisk command doesn’t make its changes until you type the w command to
exit. You can make all the changes you want and change your mind many times, but until you
type w, it won’t matter.

You’ll then want to use the mkswap command to make the partition a swap partition. The command
line is quite simple: You list the partition you want to make a swap partition (remembering that Linux
lists partitions as /dev/hda1, /dev/hda2, and so on) and the size of the partition in blocks. The command
line would look like the following:

 # mkswap -c /dev/hda2 10560

We told you the number of blocks would come in handy!

The -c option checks for bad blocks on the partition. If mkswap returns any errors, you can ignore them,
as Linux already knows of their existence and will ignore them.

After creating the swap partition, you’ll need to activate it with a command line like:

 # swapon /dev/hda2

Finally, you need to tell the filesystem that /dev/hda2 is indeed a swap partition, again using the fdisk
command. In this instance, you’ll need to change the type of the partition. When you created this
partition, it was set up as a Linux native partition. However, Linux needs to explicitly know that this is a
swap partition, so you need to change the type with the t command:

 Partition number (1-4): 2

 Hex code (type L to list codes): 82

Linux supports a wide range of partition types, as you’d see if you typed L. However, you can take our
word for it; 82 is the proper hex code. (You don’t need to know every single hex code; there’s little
reason for you to know that 8 is the hex code for AIX or that 75 is the hex code for PC/IX.)

Quit fdisk using w, making sure that your changes are written to disk. It will take a few seconds for this
to happen.

You’re now ready to create your main Linux partition.

Previous Table of Contents Next

-->

Previous Table of Contents Next

Creating the Main Linux Partition

Most of you will want to designate the remainder of the hard drive as the Linux partition, so that’s the
assumption made in the remainder of this chapter. With Command (m for help): on your screen, select n
for new partition. You’ll see the following:

 Command action

 e extended

 p primary partition (1-4)

Type p, and enter the partition number. If you’ve already installed a DOS or OS/2 partition, you’ll need
to select the number 2, as partition number 1 is already is use:

 Partition number (1-4): 2

If you’ve already installed a swap partition, you’ll need to designate this partition as 3.

You’ll then be asked where to place the partition and how large to make it. Generally speaking, you’ll
want to place the partition immediately after the previous partition:

 First cylinder (64-1010): 64

Your numbers will undoubtedly be different. The point here is that fdisk automatically lists the first
unassigned cylinder here (in this case, it was cylinder 64), and you should go with that number.

You’ll then be asked how large you want to make the partition:

 Last cylinder or +size or +sizeM or +sizeK (64-1010): 1010

Since Linux gives us the number of the last cylinder (1010), we’ll go with that. There are no advantages
to creating more than one Linux partition, unless you’re using a very large hard drive (larger than 4
gigabytes).

NOTE: This won’t apply to most users, but Linux doesn’t do very well if it’s installed as a boot
partition on cylinder 1023 or above. (This occurs with very large hard drives—1 gigabyte or
larger.) This has nothing to do with Linux, but rather with the limitations in the PC’s BIOS.
Subsequently, you should avoid installing the Linux boot partition on a partition containing this
cylinder or higher.

Finally, you’ll want to make sure that this is a Linux boot partition so you can boot from the hard disk in
the future via LILO. The t command toggles whether or not you want to use a partition as a boot
partition. Type t, and then specify this partition (2) as the partition you want to boot from.

Fdisk will then ask for a command. You’ll need to make sure your changes are recorded, so select w,
which writes the partition table to disk and then exits fdisk. After this is done, Linux gives you a
command prompt (#) again. It’s now time to run the setup program.

OS/2 Partitions and the Linux Fdisk Command

If you’ve used the OS/2 FDISK command to create your Linux partition, now is the time to change the
partition from an OS/2 partition to a Linux partition.

With the Linux fdisk command, you can change the current status of partitions by changing the tag.
Using the Linux fdisk, you’ll change the tag of the OS/2 partition to a Linux native partition. In this
instance, you’ll need to change the type of the partition. When you created this partition, it was set up as
an OS/2 partition. However, Linux needs to know that this is a Linux partition, so you need to change
the type with the t command:

 Partition number (1-4): 2

 Hex code (type L to list codes): 83

Linux supports a wide range of partition types, as you’d see if you typed L. However, you can take our
word for it; 83 is the proper hex code for a Linux native partition.

Quit fdisk using w, making sure that your changes are written to disk. It will take a few seconds for this
to happen.

Installing Linux from the Setup Program

Now comes the fun part: actually installing Linux. For this, you’ll run the setup command from a
command line:

 # setup

You’ll then see a menu with the following choices:

 HELP Read the Slackware Setup Help file

 KEYMAP Remap your keyboard if you're not using a US one

 MAKE TAGS Experts may customize tagfiles to preselect files

 ADDSWAP Set up your swap partition(s)

 TARGET Set up your target partition

 SOURCE Select source media

 DISK SETS Decide which disk sets you wish to install

 INSTALL Install selected disk sets

 CONFIGURE Reconfigure your Linux system

 EXIT Exit Slackware Linux Setup

You should first look through the help file, which is listed first. Some of the steps presented therein may
assist you in the Linux installation process.

To move through the selections in this menu, you use the cursor (arrow) keys or type the first letter in
each line (such as H for help).

Basically, the installation from CD-ROM is pretty simple. It follows these steps:

• Set up swap space for Linux.
• Tell Linux where you want it to be installed.
• Select the source for the files needed to install Linux (in most. cases, this will be the CD-
ROM).
• Select the software you want to install.
• Actually install the software.
• Configure the installed software.

Each of these steps will be covered in its own section.

NOTE: Before you get started on the installation steps, you should know that the Slackware
distribution of Linux supports many different keymaps for different languages and setups. If you
want access to another language—say, German—or another keyboard layout—such as the
Dvorak keyboard—you should select Keymap from the Setup menu.

Setting up the Swap Space

As you’ve probably guessed by now, a lot of Linux installation involves an actual installation and then
additional steps, telling Linux about the installation. This is certainly true if you’ve installed a swap
partition. (If you have not, you can skip this step.) You’ve already installed the partition, made it active,
and changed its type to a Linux swap partition. You again need to tell Linux about this partition.
However, you don’t need to format this partition, as you’ve already done so with the mkswap command.

Previous Table of Contents Next

-->

Previous Table of Contents Next

Selecting the Target for Linux

This selection should be rather simple: You’ll want to install to the Linux partition you set up earlier in
this chapter. When you select Target from the Setup menu, you’ll automatically be presented with this
partition. This section covers the choices you’ll make; for the most part, you’ll want to go with the
default choices.

Formatting the Linux partition is the next step. You’ll want to format the Linux partition for a new
installation; however, if you’re using the setup program to upgrade from a previous installation, you
won’t want to format the Linux partition.

Choosing inode density is next. Again, you’ll want to go with the default, unless you have Linux
experience and know that the default won’t help you.

After the hard disk chugs and formats the Linux partition, you’ll be asked if you want to make a DOS or
OS/2 partition visible (or, more technically speaking, mounted) from Linux—assuming that you’ve
created such a partition. Making this partition visible won’t affect Linux performance, nor will it eat
away at the size of the Linux partition. Because you may find it handy to move files via the DOS or
OS/2 partition, you probably will want to make this partition visible. You’ll be asked to provide a name
for the drive; the name doesn’t really matter, so we use dos or dosc. When you run the ls command later
in your Linux usage, you’ll see dos or dosc listed as just another directory, and the files within will
appear as Linux files.

Selecting the Source for Linux

You have five choices for where you want to install Linux from:

• hard drive partition
• floppy disks
• NFS
• premounted directory
• CD-ROM

Because you’ve bought this book, we’ll assume you want to use the accompanying CD-ROMs for
installation. However, other installation methods will be discussed later in this chapter.

NOTE: There may be cases where DOS sees a CD-ROM drive with no problems but Linux
cannot. In these cases you won’t necessarily know about this problem until you try to install
Linux from the CD-ROM and are told that the CD-ROM drive does not exist. In this case, there
are two ways to go: Search for a Linux bootkernel that supports your CD-ROM or use DOS to
copy the installation files to a hard drive partition. The first option was discussed earlier in this
chapter; the second option will be discussed later in this chapter.

The setup program then gives you a set of choices about the CD-ROM you’re installing from. The
choices are straightforward; if you’re using a Sony or SoundBlaster CD-ROM interface, you certainly
would have known about it before now (you would have needed the proper bootdisk to get to this point),
so there are no surprises on this menu.

Should You Keep Some Stuff on the CD-ROM?

For those of you with smaller hard drives, Slackware gives you the option of doing a partial install,
leaving some of the program files on the CD-ROM and running it from there. The advantage, of course,
is that you keep hard disk space free that normally would be devoted to Linux. The disadvantages come
in the form of speed—accessing your CD-ROM drive is slower than accessing your hard drive—and in
tying up your CD-ROM drive with Slackware. Our recommendation, of course, is to install everything
to your hard drive; this offers the best performance overall, and it’s the easiest system to maintain.

However, Slackware does offer an alternative that uses the CD-ROM, as slaktest links /usr to /cdrom/
live/usr and runs everything from the CD-ROM. This yields a Linux hard disk installation of 10
megabytes or so. The disadvantage, of course, is that you’ll need to completely reinstall Linux if you
decide to upgrade your system.

If it sounds like we’re a little negative about the idea of running Linux off of the CD-ROM, it’s because
we are. If you’re careful about installation, you can easily install only the parts of Linux you’re really
going to use. And by running partially from the CD-ROM, you’re sacrificing both speed and flexibility.

If you’re doing a normal install, choose the slakware selection.

Previous Table of Contents Next

-->

Previous Table of Contents Next

Choosing the Disk Sets to Install

Now comes the fun part: choosing the software you want to install.

True to its roots as a diskette-based operating system, Linux divides software into disk sets. Each disk
set is uniquely named and corresponds to a specific part of the operating system. For example, the A
series contains the core of Linux, and its installation is mandatory.

The setup program divides disk sets and the software within into mandatory and optional installations.
Some of the elements of Linux, such as the aforementioned A series, is mandatory. Other installations,
such as terminal packages, are optional. During the installation process, Linux will automatically install
the mandatory packages and will prompt you before installing the optional packages.

NOTE: There is a way to override this, as will be explained later in this section.

During the initial menu entitled Series Selection, you’ll be presented with a list of the disk sets and a
short explanation of what is contained on them. Generally speaking, you won’t want to install all the
disk sets, as there are some disk sets that overlap and their coexistence on the hard drive is not wise
(particularly when it comes to development tools). In addition, you don’t want to waste the hard disk
space needed for a full installation—will you really need three or four text editors, multiple text-
formatting packages, and a slew of fonts you will never use? Choose the software you think you’re
likely to use. You can always run the setup program again and install additional disk sets in the future.

NOTE: Technically speaking, all that’s needed for a minimal installation of Linux is the A disk
set.

The full set of disk sets is listed in Table 2.6.

Table 2.6A Full List of the Linux Disk Sets

Series Purpose

A The base system; if you install only this disk set, you’ll have enough to get up and
running and have elvis and comm programs available.

AP Various applications and add-ons, such as the online manual (man) pages, groff,
ispell, term (and many TCP/IP programs ported to term), joe, jed, jove,
ghostscript, sc, bc, ftape support, and the quota utilities.

D Program development; GCC/G++/Objective C 2.7.2.1, make (GNU and BSD),
byacc and GNU bison, flex, the 5.4.23 C libraries, gdb, kernel source for Linux
2.0.x. SVGAlib, ncurses, clisp, f2c, p2c, m4, perl, rcs, and dll tools.

E GNU emacs 19.31.

F A collection of FAQs and other documentation.

K Source code for the Linux 2.0.x kernel.

N Networking; TCP/IP, UUCP, mailx, dip, PPP, deliver, elm, pine, BSD sendmail,
cnews, nn, tin, trn, and inn.

T teTeX release 0.4 (teTex is Thomas Esser’s Tex distribution for Linux.)

TCL Tcl, Tk, TclX; A port of the major Tcl packages to Linux, including shared library
support.

X The base XFree86 3.2 system, with libXpm, fvwm 1.23b, and xlock added.

XAP X applications: X11 ghostscript, libgr13, seyon, workman, xfilemanager, xv
3.01, GNU chess and xboard, xfm 1.3, ghostview, gnuplot, xpaint, xfractint,
fvwm-95-2, and various X games.

XD X11 server link kit, static libraries, and PEX support.

XV Xview 3.2p1-X11R6; XView libraries, and the Open Look virtual and nonvirtual
window managers for XFree86 3.2.

Y Games; the BSD games collection, Tetris for terminals, and Sasteroids.

Mark the disk sets you want to install by pressing the SpaceBar.

You’ll then be asked whether you want to use the default tagfiles or create your own. When a piece of
software is installed, it’s said to be tagged. By using the default tagfiles, you are installing software
deemed to be mandatory, while the system prompts you before installing packages that aren’t
mandatory. Again, your best move is to go with the default unless you’ve had experience with custom
tagfiles and know exactly what you want to install.

WARNING: At this point there’s an option to install everything. Don’t do this, unless you’ve
designated a small group of disk sets to be installed and know that you do indeed want to install
everything.

Linux will begin the installation. It will tell you what’s being installed, including mandatory packages.
When it comes to a nonmandatory piece of software, it will stop and ask if you do indeed want to install

the software. (It also differentiates between software, noting if the installation is recommended—which
means you really should install it—or optional.) An added bonus during this process is that setup will
tell you how much disk space the nonmandatory software will use (alas, there’s no overall reckoning of
how much space the entire installation will use). Use the cursor keys to move between the Yes and No
choices, and use Enter to move on.

Previous Table of Contents Next

-->

Previous Table of Contents Next

We’re not going to list every piece of software that can be installed; you can make most of these
decisions on your own. However, there are some things to note as the disk sets are installed:

• Linux will install a kernel best suited for your PC configuration; most of the precompiled
kernels should meet the needs of most users. However, during the installation process, you’ll be
asked about installing various kernels that are not applicable to your PC configuration. In fact,
one of the first disk sets includes support for a Linux kernel lacking SCSI support. Because the
setup program doesn’t know anything about your hardware, it will ask if you want to install this
kernel. In most cases, you’ll want to install the kernel from your bootdisk—setup gives you this
option once all the packages are installed.
• During the installation process you’ll be asked whether you want to install a package called
gpm, which manages the mouse for Linux running in character mode. This package can cause
conflicts with the X Window System and its mouse control, so if you planning on using X, you
shouldn’t install this software. (However, if you don’t plan on using X, you should install gpm,
because it allows you to better use the Midnight Commander, a useful text-based disk utility.)
• There are many text editors available in the Linux disk sets, including emacs and vi clones
called elvis and vim. These should meet your needs; if you’re tight on space, you can avoid the
other text editors, such as jove and joe. (Not that we’re saying anything bad about jove or joe,
mind you.)
• You’ll be asked about alternate shells, including zsh, ash, and tcsh. The default Linux shell is
bash (Bourne Again shell), and most users—especially beginners—will find that it works well.
However, you may find that one of the alternate shells better fits your needs or works more like a
shell you’ve used in the past. Because the shells don’t take up much disk space, go ahead and
install them all.
• If you install the GNU C compiler, you also need to install binutils, libc, and the linuxinc
package (this contains the include file from the Linux kernel source). Some of these packages are
tagged mandatory by the Linux setup program; the warning applies if you use your own tagfiles.)
• The version of emacs that’s initially installed from the CD-ROM was compiled with the
assumption that it would be running under the X Window System. If you don’t plan on using X,
be sure to install the emac_nox package, which doesn’t contain the X Window support and can
be run in character mode. It’s also smaller and will save some disk space.
• If you install the x series of disk sets, you’ll be asked about the chipset used in your graphics
card, as there are some X Window servers tailored to specific chipsets. If you’re not sure which
chipset you have, don’t respond to any specific chipsets and install the SuperVGA or VGA X
server; you can always change this when you install XFree86 (as described in Chapter 3).
• Some of the older applications require some older libraries to run, and at some point you’ll be
asked about including those libraries. You should install them.
• Generally speaking, you should install as many fonts as possible.

Being a Good Linux Citizen

As you install the disk sets, you’ll occasionally see a message pointing out that Linux is installing
unregistered software. This means that the UNIX freeware is being included as a service, and it’s up to
you to pay a registration fee. (The best example of this is xv, an outstanding graphics program from John
Bradley.) As a good Linux citizen, you’ll want to check through the online-manual pages or README
documents associated with these programs and register the software.

Dealing with Errors

Although it is a very infrequent occurrence, you may experience an error message or two when installing
Linux from the disk sets. One of the errors may be Device Full, which means that you’ve filled your
hard drive. Slackware, however, will continue to attempt to install software, even if the disk is full.

To end the installation program, either hit the Esc key a few times or type Ctrl-C.

Configuring the Installed Software

There are two main tasks involved after the Linux disk sets are installed: configuring XFree86 and
setting up boot options.

Installing a Kernel

The first Linux configuration task is to install a Linux kernel on your hard drive. It’s possible that
you’ve already installed a kernel from the A series (there are two kernels on the A series, an IDE and a
SCSI generic kernel), but in most cases it is preferable to replace this kernel with the one you’ve used to
install. That way, there won’t be any surprises when you reboot; you’ve installed a kernel that you know
works on your machine.

To do this, select the bootdisk option on the Kernel Installation menu. You’ll be asked to reinsert your
installation bootdisk, and the kernel will be copied from it onto your hard drive. Other options on this
menu include installing a kernel from a DOS floppy or from the Slackware CD-ROM drive. If you know
exactly which kernel you need, you can try one of these options. You should be aware that installing the
wrong kernel here can leave Linux unbootable, requiring you to use your bootdisk or Loadlin to start
the system.

NOTE: When you install a kernel from this menu, all it does is put the kernel file onto your root
Linux partition as /vmlinuz. Until you make a system bootdisk from it or install LILO, your
system is not ready to boot. So, you’ll want to make a system bootdisk from the next menu.

Creating a Boot Floppy

Linux will boot from either a floppy drive or a hard drive. However, it’s recommended that you set up
the means to boot either way; that way, if you have hardware problems, you can always boot the system
from a floppy drive. Hence, the request from the setup program to create a boot floppy. This floppy can
be used to boot Linux at any point. This will be handy should you experience some hard disk problems
or screw up your hard disk so severely that the system won’t load.

NOTE: If you don’t create a boot floppy at this time, you can always do so later. The topic is
covered in some depth in Chapter 6.

Previous Table of Contents Next

-->

Previous Table of Contents Next

Configuring the Modem

If you’re planning on using a modem for connecting to online systems or to a TCP/IP network via SLIP
or PPP, you need to configure the modem. Essentially, this involves just telling Linux exactly what
serial port the modem is connected to. The first serial port on a PC is called com1, and under Linux
parlance this becomes cua0; the second serial port on a PC is called com2, and under Linux parlance this
becomes cua1; and so on. (Note the numbering difference; UNIX likes to start things at 0, and PCs
prefer to start things at 1.)

After you set up the mouse, you’ll be asked to set the speed for the modem. The choices (38400, 19200,
et al.) are pretty clear.

NOTE: If you’re using a modem and the speed isn’t represented on the menu, use the next-
fastest speed. For example, to properly configure a 28800-bps modem, you’d choose 38400.

Configuring the Mouse

You’ll want to use a mouse if you’re using the X Window System, and this menu allows you to set up
the proper mouse. For newer PCs, setting up a mouse isn’t a hassle at all because they usually contain a
serial port for that purpose. All you need to do is tell Linux what kind of mouse you’re using and its
location (if you’re using a serial mouse, you’ll need to specify where the mouse is connected), and then
move on from there.

Configuring LILO

LILO is the Linux Loader, and it’s used to boot Linux from the hard disk. It can also be used to boot
additional operating systems (like OS/2 and MS-DOS) from the hard disk.

NOTE: LILO is a tool best left to Linux veterans. If you’ve used LILO before, go ahead and
follow these directions to install it. However, if you’re a Linux newbie and don’t feel up to the
task of a challenging configuration, it’s best for you to skip LILO.

LILO works with a configuration file that’s generated automatically through this Setup program. Your

first move will be to start the process, then mark any operating systems you want to appear in this
configuration file. Because you want Linux to be able to boot, you’ll want to begin by specifying Linux.
After that, you can designate another operating system (MS-DOS or OS/2) as a possible boot option.
You’ll want to specify Linux first, however, so it appears first in the configuration file. When you’re
finished running through these queries, you’ll end up with a file that looks like this:

 # LILO configuration file

 # generated by 'liloconfig'

 #

 # Start LILO global section

 boot = /dev/hda

 #compact # faster, but won't work on all systems.

 delay = 50

 vga = normal # force sane state

 ramdisk = 0 # paranoia setting

 # End LILO global section

 # Linux bootable partition config begins

 image = /vmlinuz

 root = /dev/hda2

 label = Linux

 read-only # Non-UMSDOS filesystems should be mounted read-only
for

 checking

 # Linux bootable partition config ends

 # DOS bootable partition config begins

 other = /dev/hda1

 label = DOS

 table = /dev/hda

 # DOS bootable partition config ends

This file is stored as /etc/lilo.conf.

You’ll also be asked about how long to wait before loading Linux. LILO is pretty handy, in that it lets
you specify a period of time (5 seconds or 30 seconds) between when LILO loads and when the first
operating system is loaded. (In the /etc/lilo.conf file, this appears as the numeral 50 if you chose 5
seconds, and 300 if you chose 30 seconds.) This gives you time to specify another operating system to
boot, should you want to boot DOS or OS/2 instead of Linux. This is done by pressing the left Shift key
after LILO loads; you will see the following prompt:

 boot:

If you specify DOS, DOS will boot from the DOS partition (provided, of course, that you’ve marked this
partition as a boot partition). Pressing the Tab key gives you a list of options.

NOTE: If you’re using OS/2’s Boot Manager, you may want to use that for the primary boot
loader and use LILO to boot Linux.

Miscellaneous Installation Notes

At this time you can configure your Linux box for use on the network. However, because this is an
advanced subject, we’ll skip it for now and revisit it in Chapter 8.

There might be other configuration options presented to you, depending on what you installed (for
example, if you installed sendmail, there will be a query regarding its installation). Again, these tend to
be advanced topics, so we’ll revisit them throughout the course of this book.

Now that the installation is finished, it’s time to actually run Linux. Before we get to that point,
however, we’ll discuss some alternate installation methods.

Other Installation Methods

You may run into situations where you are able to access a CD-ROM drive from DOS but not from
Linux’s installation process. (This will happen if a SCSI card is not supported by Linux but there are
drivers available for DOS or OS/2.) If this occurs, you can still use the accompanying CD-ROM for
installation, but you’ll need to copy the files to your hard drive, floppy disks, or a tape drive. All three
types of installation are explained here.

Installing from Hard Drive

This installation method involves moving installation files from the CD-ROM to a DOS hard disk
partition and installing from there. This must be a straight DOS partition, not altered via a disk-doubling
technology such as the disk doubler in MS-DOS 6.x or Stacker.

You’ll need to replicate the file structure from the CD-ROM on the DOS partition, keeping intact the
many subdirectories (A1, A2, and so on).

When you run the setup program and specify the source of the installation files, you’ll choose a hard
disk partition instead of a CD-ROM.

Installing from 3.25-Inch Floppy Disks

The disk sets contained on the CD-ROM can be copied directly to DOS-formatted diskettes. (You’ll end
up with a slew of diskettes, of course.) For each disk, make an MS-DOS format disk and copy the proper
files to it. Then, when you run the setup program, you can specify that you’re installing from diskettes
and not from another source.

The 00index.txt files are added by the FTP server; you don’t need those.

Previous Table of Contents Next

-->

Previous Table of Contents Next

Installing from 5.25-Inch Floppy Disks

Linux prefers to be installed from a 3.5-inch disk drive. However, it is possible to install on a machine
that has only a 5.25-inch drive. This isn’t as easy as installing from a 3.5-inch drive, but if you install off
of your hard drive it may actually be easier.

The first three disks of Slackware Linux, the A disks, should all fit within a 1.2MB diskette. To install
them, you’ll need a boot kernel and a rootdisk. To make the boot-kernel disk, copy the boot kernel of
your choice to a floppy using the UNIX command dd or RAWRITE.EXE. To make the rootdisk, write
color.gz, text.gz, umsdos.gz, or tape.gz to a floppy in the same way. (These are in /ROOTDSKS.)

Use the boot-kernel disk to boot the rootdisk, and then install from there. This will load the ramdisk.
Once you have the slackware: prompt you can remove the disk from your machine and continue with
the installation.

Once you’ve got the base system installed, you can install the rest of the disks by downloading them on
to your hard drive and installing them from there. Disk series other than A won’t fit onto 1.2MB disks.

Installing from Tape

The TAPE.GZ rootdisk file can be used to install Slackware96 from tape. This has been tested on a
Colorado Jumbo 250, but it should work for most floppy tape and SCSI tape drives. To do this, you’ll
need to know a little about UNIX and its filesystem.

Any of the boot-kernel disks will work for floppy tape support. If you’re installing from a SCSI drive,
make sure you use a boot kernel with SCSI support.

You need to have a blank MS-DOS formatted disk ready to store the install scripts and installation
defaults. The installation uses two tape passes—one to read these files from the tape and the second to
do the actual installation. Once you’ve written the files from the first tape pass to your floppy, you won’t
need to scan those files again if you install from the same tape in the future.

The tape must be written in GNU tar format (or in a compatible block size with some other tar). This is
the command that would write out the tape, assuming you’re sitting in a directory set up like /pub/linux/
slackware on ftp.cdrom.com:

file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch02/ftp.cdrom.com

 tar cv {a?,ap?,d?,d1?,e?,f?,k?,n?,t?,tcl?,x?,x1?,xap?,xd?,xv?,
y?}/*

This ensures that the files are written to the tape in the proper order.

You must set your TAPE variable first, like these lines in the .profile file under bash:

 TAPE=/dev/nrft0

 export TAPE

Unlike installing from floppy disks, you don’t need to install all the *.tgz files, or even all the
directories. The only requirement is that base.tgz be the first package (*tgz file) written to the tape.

This method isn’t fully guaranteed to work.

Installing When RAM is Very Tight

Installation can be tricky on a machine with 4 megabytes or less of RAM. Here are a few tricks that can
be helpful if you run into problems. (Some of the symptoms of low memory might include system hangs
while booting the bootdisk; root password required on the rootdisk; and an inability to run fdisk or
mkswap.)

It’s still possible to install Linux in this situation by avoiding the use of a ramdisk during installation.
Normally the entire rootdisk image is loaded into memory before installation begins; this uses 1440K of
RAM, a sizable chunk on a machine with only 4096K (and probably less available) in the first place. To
save this memory for Linux, you’ll need to prepare a decompressed rootdisk and use it to install.

First, you’ll want to prepare a directory for the various files you’ll need to decompress the rootdisk
image and write it to a floppy. Under DOS, create a directory with the MKDIR command. The name of
the directory doesn’t matter; in the following examples we’ve arbitrarily chosen SLACK as the name of
the directory:

 C:> MKDIR SLACK

You’ll then want to copy the appropriate files from the CD-ROM to the SLACK directory. We’ll start
with GZIP.EXE (needed to decompress the image file) and RAWRITE.EXE (needed to write the

decompressed image to floppy disk). In the following example, we assume the CD-ROM drive is
represented by the drive letter E:. If your drive uses a different letter, use that instead.

 C:> COPY E:\INSTALL\GZIP.EXE C:\SLACK

 C:> COPY E:\INSTALL\RAWRITE.EXE C:\SLACK

Next, select an appropriate rootdisk image from the E:\ROOTDSKS directory on the CD-ROM and
copy it to the C:\SLACK directory. In this example we’ll use the COLOR.GZ image:

 C:> COPY E:\ROOTDSKS\COLOR.GZ C:\SLACK

Now we need to use GZIP.EXE to decompress the image. Execute these commands to change into the
SLACK directory and decompress the rootdisk image:

 C:> CD \SLACK

 C:\SLACK> GZIP -D COLOR.GZ

Previous Table of Contents Next

-->

Previous Table of Contents Next

Once GZIP has done its thing, the COLOR.GZ file will be replaced in the C:\SLACK directory by the
uncompressed version, named COLOR. To write this to a diskette, insert a formatted 3.5-inch floppy
disk in your A: drive and use the RAWRITE command to dump the image to disk:

 C:\SLACK> RAWRITE COLOR A:

If your 3.5-inch drive is on B:, use this command instead:

 C:\SLACK> RAWRITE COLOR B:

Now you’re ready to boot the install disk. Assuming you’ve selected and created a bootdisk already (if
not, see the previous section explaining this), put the bootdisk in your A: drive and reboot. When the
disk starts, you’ll see a welcome message and a screenful of information, as well as a

 boot:

prompt at the bottom of the screen. You’ll need to enter some information at this prompt to tell the
kernel where to mount your rootdisk. If you have a 3.5-inch floppy drive on B:, great—you’ll want to
use that for the rootdisk. If not, you’ll have to manages with the rootdisk in your boot drive. With the
rootdisk in the boot drive you won’t be able to install from floppy disks or make a bootdisk at the end of
the installation process, because the disk will be “mounted” in the boot drive and cannot be removed (no
matter what the screen tells you) until the machine is rebooted. Here’s the command to enter at the boot:
prompt to use an uncompressed rootdisk in your A: drive:

 boot: mount root=/dev/fd0 ramdisk=0

If you have the rootdisk in your B: drive, insert the rootdisk in B:, and enter this command instead:

 boot: mount root=/dev/fd1 ramdisk=0

The kernel will now boot. If you’re using drive A: for your rootdisk, you’ll be prompted to exchange the
disks and hit Enter. Once you’ve done this, the rootdisk will start loading, eventually giving you a login
prompt. From here, you can install Linux. A word of caution: If you’re using this method to install with
the rootdisk in drive A:, you cannot remove the rootdisk from your drive until the machine has been shut
down. As a result, you’ll be unable to install your bootdisk kernel or make a system bootdisk when
configuring your system, and you will need to have a different method of initially starting your machine.
A simple way to boot your machine is to use the installation bootdisk with a slightly different command
at the boot: prompt. If, for example, you installed Linux on /dev/hda2, you can start Linux with this
command on the bootdisk’s boot: prompt:

 boot: mount root=/dev/hda2 ramdisk=0 ro

This will boot Linux on /dev/hda2, with no ramdisk, read-only. If you use UMSDOS, you’ll want to
boot your system in read-write mode, like this:

 boot: mount root=/dev/hda2 ramdisk=0 rw

Once your machine is up and running, you can switch to a different kernel if you like, using one of the
choices in the \KERNELS directory on the CD-ROM, or compile your own from the kernel source in /
usr/src/linux. This will provide optimal performance, because it won’t contain any unnecessary drivers.

Booting Linux from DOS Using Loadlin

Loadlin is a handy utility for Linux users that also run MS-DOS or Windows 95. Using Loadlin, you
can start Linux from a DOS prompt or set up an icon in Windows 95 that allows you to switch to Linux.
Loadlin is also probably the safest way to launch Linux from your hard drive, because it doesn’t require
messing with the partition table at all—you just boot DOS normally and then use the LOADLIN.EXE
command to start Linux when you need it.

To use Loadlin, you’ll need to install it on your DOS drive. To do this, you’ll need to use an unzip
program, such as UNZIP.EXE or PKUNZIP.EXE; most DOS users will already have copies of these.
Assuming your Slackware CD is on drive E: and you want to put Loadlin on drive C:, unzip the file
like this:

 C:\> PKUNZIP -d E:\KERNELS\LODLIN16.ZIP

The -d flag tells the command to preserve the directory structure found in the zip archive. This will
create a C:\LOADLIN directory on your machine containing a number of files.

The next step is to pick an appropriate kernel from a subdirectory under \KERNELS on the CD-ROM.
The \BOOTDSKS.144 \WHICH.ONE document might be helpful in making your selection. The actual
kernel file will be named ZIMAGE or BZIMAGE; this is what you’ll want to copy into your C:
\LOADLIN directory.

For this example, we’ll use the kernel in the E:\KERNELS\BARE.I directory:

 C:\> CD LOADLIN

 C:\LOADLIN> COPY E:\KERNELS\BARE.I\ZIMAGE .

Now we have everything we need to start a Linux system. To do that, you need to know the following
things:

• The device name of the Linux partition you intend to boot (such as /dev/hda2)
• The path and filename of the Linux kernel you plan to use (such as C:\LOADLIN\ZIMAGE)
• Whether the partition should be mounted read-only (as in the case of a native Linux partition,
so it can do safe filesystem checking at boot time) or read-write (needed by UMSDOS, which
does not check filesystems at boot)

This information is fed to the LOADLIN.EXE program, which in turn loads Linux into memory and
boots it. Here’s an example:

 C:\LOADLIN> LOADLIN C:\LOADLIN\ZIMAGE ROOT=/dev/hda2 RO

This loads the Linux kernel and boots the /dev/hda2 partition in read-only (RO) mode. If you’re using
UMSDOS, you’d replace the RO with RW to use read-write mode instead.

NOTE: Some DOS drivers interfere with Loadlin, in particular the emm386 driver for expanded
memory. If this happens, you’ll have to remove the driver from your CONFIG.SYS file and try
again. Also, Loadlin will not run directly under Windows 95, although you can still set up an

icon for it that first switches your computer into DOS mode. (In other words, the process is to
start a DOS session under Windows 95 and then launch Loadlin. We’ll explain further in the next
section.)

If all goes well, your machine should switch to Linux. If you’d like to automate the process further, edit
the LINUX.BAT file in your C:\LOADLIN directory. Then copy LINUX.BAT into your C:\DOS
directory, and you’ll be able to switch to Linux from DOS by simply typing LINUX at a prompt.

Previous Table of Contents Next

-->

Previous Table of Contents Next

Adding a Linux Icon to Windows 95

For users running Windows 95, it can be handy to set up a shortcut to start Linux from the Windows
desktop. Once you’ve installed Loadlin and configured your LINUX.BAT file, it’s a simple matter to
add an icon that starts LINUX.BAT. Here’s how it’s done:

1. Click on the Windows Desktop with your right mouse button. Under New, select Shortcut.
2. Windows 95 will display a Create Shortcut dialog box, asking for the command line used to
start the program. Type the location of your LINUX.BAT file into the box and hit Enter. For
example:

 C:\LOADLIN\LINUX.BAT

3. Next, Windows will want a title for the program. The default of Linux should be just fine, but
you can enter whatever you like.
4. Now you’ll need to select an icon. Again, you can pick whatever you like. (We use the first-
aid kit icon—Linux to the rescue!)

Now you’ll see the new Linux icon appear on the desktop. It’s not quite ready to go yet, however; as
you recall, Loadlin will not run directly under Windows 95, so we need to adjust the properties to force
the program to run in real MS-DOS mode:

1. Click on the Linux icon with your right mouse button, and select Properties from the menu.
2. Click the Program tab.
3. Click the Advanced… button.
4. Select the checkbox for MS-DOS mode and then hit the OK button.
5. Hit the main dialog box’s OK button, and your Linux icon is ready to use.

Using Loadlin to Install Linux without Floppies

It’s rare, but in some cases (especially with laptops, it seems) a machine’s floppy controller doesn’t
work correctly with Linux, and the boot/rootdisks don’t load correctly. If that happens on your machine,
you’ll be happy to know that Loadlin has a new feature that allows you to use it to load an installation
rootdisk.

First, you’ll need to install Loadlin as described before, unzipping the lodlin16.zip file on your C: drive:

 C:\> PKUNZIP -d E:\KERNELS\LODLIN16.ZIP

Next, choose a kernel from under the CD-ROM’s \KERNELS directory and install it in your C:
\LOADLIN directory. In this example we’ll use a kernel from the E:\KERNELS\BARE.I directory:

 C:\> COPY E:\KERNELS\BARE.I\ZIMAGE C:\LOADLIN

Now you’ll need to copy a rootdisk image such as COLOR.GZ into your LOADLIN directory:

 C:\> COPY E:\ROOTDSKS\COLOR.GZ C:\LOADLIN

Now you’re all set to use Loadlin to start the installation process. Change into the LOADLIN directory
and use Loadlin to load the Linux kernel and your rootdisk image:

 C:\> CD LOADLIN

 C:\LOADLIN> LOADLIN ZIMAGE ROOT=/dev/ram RW INITRD=COLOR.GZ

This will boot Linux and give you a login prompt. From here you can login and proceed to install Linux
as usual.

Recompiling a Kernel

Most Linux users will find that the precompiled kernels that come on the accompanying CD-ROMs
should work for them; PC hardware is becoming reasonably standard, and if you paid any attention at all
to Chapter 1, you’ll have a hardware configuration that optimizes Linux installation and usage.

However, on the remote chance you need to recompile your kernel (whether directed to in a Linux
HOW-TO or through the advice from an expert on the Usenet; this will happen if you’re using an
unsupported SCSI CD-ROM, bus mouse, or sound card), here’s how to do so:

0. If you haven’t installed the C compiler and kernel source, do that.
1. Use the boot-kernel disk you installed with to start your machine. At the LILO: prompt, enter:

 LILO: mount root=/dev/hda1

assuming that /dev/hda1 is your Linux partition. (This is the assumption made through the rest of
this section.) If not, enter your Linux partition instead. After this, ignore any error messages as
the system starts up.
2. Log in as root, and recompile the kernel with these steps:

 cd /usr/src/linux

 make config

At this point you’ll choose your drivers. Repeat step 3 until you are satisfied with your choices.

If you are using LILO, the following will build and install the new kernel:

 make dep ; make clean ; make zlilo

 rdev -R /vmlinuz 1

If you are using a bootdisk, the following commands will build the kernel and create a new bootdisk for
your machine:

 make dep ; make clean ; make zImage

 rdev -R zImage 1

 rdev -v zImage -1

 rdev zImage /dev/hda1

 fdformat /dev/fd0u1440

 cat zImage > /dev/fd0

You’ll need to place a clean floppy disk into your drive before the fdformat command.

You should now have a Linux kernel that can make full use of all supported hardware installed in your
machine. Reboot and try it out.

Previous Table of Contents Next

-->

Previous Table of Contents Next

Upgrading from a Previous Version of Linux

If you’re using an older version of Slackware and you want to upgrade to the version on the
accompanying CD-ROMs, you can do so without going through the agony of a full installation.

The new versions of pkgtool (a package maintenance tool developed for the Slackware distribution)
should provide a clean upgrade path from earlier versions of Slackware. Because pkgtool can now
remove packages from your hard drive while running on a self-contained Linux filesystem loaded into a
ramdisk, it can remove any files from your system, including ones, such as the shell, shared libraries,
init, and other crucial system files, that were difficult or impossible to remove while running on the hard
drive.

NOTE: Upgrading through this method is probably more trouble than it’s worth. For example,
several commonly reported bugs are caused by improper upgrading—mixing disks from different
versions of the distribution and/or failing to remove old packages first. We need to face the fact
that things haven’t quite settled down yet, and until they do it’s not always possible to foresee
differences in filesystem structure, daemons, utilities, and so on that can lead to problems with the
system.

The correct and best way to upgrade to a new distribution version is to back up everything you
want saved and then reinstall from scratch. This is especially true for the A and N series disks. If
you do upgrade packages from one of those disksets, you should seriously consider which
packages from the other one might be related somehow and install those too. Again, it can be
tricky to know just which packages are related, given the overall complexity of the Linux system.
That’s why, unless you really know what you’re doing, there is a substantial risk of screwing up a
system while attempting to upgrade it.

Here’s how you’d upgrade to a newer version of Slackware from any previous version that supports
package information files in /var/adm/packages. (If your system puts these files elsewhere, you might
still be able to do this by creating a symbolic link from the package information directory to /var/adm/
packages.) The steps are as follows:

1. Back up important files, or take your chances. Odds are you’ll come through OK. However,
there are two important exceptions to this rule. The first (and most obvious) is when a package
overwrites a file you meant to keep with a new one. The second, and possibly more serious,

situation is when the system needs to replace an existing file with a symbolic link. It will replace
the file, whether it’s a simple file, a file with a file permission of 444, or a directory filled with
other subdirectories, each containing part of your doctoral dissertation. So, be careful.
2. Make a list of the packages you plan to replace.
3. Use a boot-kernel disk to boot one of the root/install disks. Log in as root.
4. Mount your root Linux partitions under /mnt while logged into the install disk. The method
used here differs, depending on what filesystem you’re using for Linux. For example, to mount
an ext2fs partition, use

 mount /dev/hda1 /mnt -t ext2

Replace /dev/hda1 with the name of your root partition.
If you’re using UMSDOS (the system that allows you to install onto an existing MS-DOS
filesystem), use this command:

 mount /dev/hda1 /mnt -t umsdos

If you’ve got other partitions that are part of your Linux filesystem, mount them after you’ve
mounted that root partition. The method is the same; for example, here’s how you’d mount an
ext2fs /usr partition:

 mount /dev/hda2 /mnt/usr -t ext2

5. Once the partition has been mounted, you need to activate swap space if the system has less
than 8 megabytes of RAM. (If you have 8 or more megabytes of RAM, you may go on to step 6.)
You may use either a swap partition or a swapfile. To get a quick listing of your partition
information, you can always type fdisk -l. Doing this on a typical machine provides the following
information:

Disk /dev/hda: 15 heads, 17 sectors, 1001 cylinders

Units = cylinders of 255 * 512 bytes

 Device Boot Begin Start End Blocks Id System

 /dev/hda1 10 10 90 10327+ 1 DOS 12-bit
FAT

 /dev/hda2 91 91 1000 116025 5 Extended

 /dev/hda3 * 1 1 9 1139 a OPUS

 /dev/hda5 * 91 91 1000 116016+ 6 DOS 16-bit
>=32M

Disk /dev/hdb: 16 heads, 31 sectors, 967 cylinders

Units = cylinders of 496 * 512 bytes

 Device Boot Begin Start End Blocks Id System

 /dev/hdb1 * 1 1 921 228392+ 6 DOS 16-bit
>=32M

 /dev/hdb2 922 922 966 11160 82 Linux swap

From this display, you can see that /dev/hdb2 has been designated as the Linux swap partition. If
the partition has not been previously prepared with mkswap, here’s how that would be done:

 mkswap /dev/hdb2 11160

To activate the swap partition, you would type:

 swapon /dev/hdb2

6. Remove the packages. To do this, type pkgtool and select the option Remove installed

packages. You’ll be given a list of packages that you’ve installed—just select the packages that
you plan to replace.
If you’re using one of the full-color versions of pkgtool, select the packages to remove by
moving up and down through the list with + and - and selecting packages to remove with the
Spacebar. Once you’ve selected all the packages you want to remove, hit Enter to remove them.
If you’re using one of the tty-based versions of pkgtool, you’ll have to type in the names of the
packages you wish to remove. Separate each name with a space. Don’t worry about how long the
line is—just keep typing in the names until you’ve entered them all, and then hit Enter to remove
them.

That’s it! Now you’ve cleaned up the old packages and you’re ready to install the new ones. Type setup
at a command line and install the new packages as normal.

Although it never hurts to play it safe and remove all packages from the bootdisk, almost all of them can
be removed using pkgtool from your hard drive. The A series is the important exception here.

Previous Table of Contents Next

-->

Previous Table of Contents Next

Booting the System

After Linux has been installed, go ahead and reboot. If you’ve installed LILO, you’ll see it appear after
the PC runs through its BIOS check. As Linux boots, you’ll see a long Linux-related diagnostic, as
Linux checks the system and makes sure everything is where it’s supposed to be. For the most part, you
can ignore any errors messages you see here (such as a proclamation that the name of the machine
darkstar does not appear to be supported). After all the diagnostics, you’ll finally be presented with a
command prompt:

 Welcome to Linux 2.0.29.

 darkstar login:

NOTE: If you installed networking capabilities when you installed Slackware96, you were asked
the name of your machine. This name should appear in the place of darkstar.

Because there are no users on the system, you’ll login as the root user, so go ahead and type in root as
the login. There will be no prompting for a password.

NOTE: The root user is the supreme being on a UNIX system. Most of the traditional security
tools within the UNIX operating system don’t apply to the root user—when logged in as root,
you can do just about anything. It’s generally not a good idea to use the UNIX system as the root
user, however; the proscribed practice is to set up your own account and then save the root login
only for those times when you’re performing system administration.

After you’re logged in, you’ll see the following command prompt:

 darkstar:~#

A command prompt is where you enter commands into the UNIX system. Your first commands will be

to change your machine name and to set up a user account for yourself.

Adding Users

Your first action as the Linux supreme being is to set up an account for your daily usage. To do this,
type the following at the command prompt:

 darkstar:~# adduser

 Login name for new user (8 characters or less) []: kevinr

The adduser command does exactly what it says: adds a new user to the system. In the previous
example, the user kevinr has been added to the system. After specifying the username, you’ll be asked
additional information about the preferences of that user. Unless you’re familiar with Linux, you’ll want
to stick with the defaults for now. (The defaults will be listed in brackets. Wherever there’s a default,
you can go ahead and hit the Enter key instead of typing in the default selection. In our example, we’ll
type in the defaults.) The entire sequence will look something like this:

 User id for kevinr [defaults to next avaliable]:

 Initial group for kevinr [users]: users

 Additional groups for kevinr []:

 kevinr’s home directory [/home/kevinr]: /home/kevinr

 kevinr’s shell [/bin/bash]: /bin/bash

 kevnir’s account expiry date (MM/DD/YY) []:

 OK, I’m about to make a new account. Here’s what you entered so
far.

 New login name: kevinr

 New UID: [Next available]

 Initial group: users

 Additional groups: [none]

 Home directory: /home/kevinr

 Shell: bin/bash

 Expiry date: [no expiration]

 This is it...if you want to bail out, hit Control-C. Otherwise,

 press ENTER and go ahead and make the new account.

 Making new account:

 Changing the user information for kevinr

 Enter the new value, or press return for the default

 Full Name []: Kevin Reichard

 Room Number []:

 Work Phone []:

 Home Phone []:

 Other []:

 Changing password for kevinr

 Enter the new password (minimum of 5, maximum of 8 characters)

 Please use a combination of upper and lower case letters and
numbers.

 New password: <new password1>

 Re-enter new password: <new password1>

 Password changed.

 Done...

If you’re not planning on using Linux for anything but a single-user operating system, you don’t need to
worry about things like group ID and UID (which is short for user ID). And even if you do plan on using
Linux on a network, you can change these parameters later.

Additionally, you probably noticed that the name darkstar appears as the name of your machine. You
probably don’t want to leave this as the name of your machine, so you should change it right off the bat.
This name is contained in the file /etc/HOSTNAME, and the default is darkstar.frop.org. To change
it, you’ll use a text editor (in the example, we’ll use vi) and edit this file. To load the vi text editor and
the /etc/HOSTNAME file, use the following command line:

 darkstar:~# vi /etc/HOSTNAME

You’ll see a screen like the one in Figure 2.4.

Figure 2.4 Editing the /etc/HOSTNAME file.

NOTE: You may have to make further changes if you’re on a TCP/IP network. For now, you can
change the name to anything you’d like.

You’ll want to edit this file, changing darkstar.frop.org to whatever you’d like. If you’ve never used the
vi or elvis text editor, skip ahead to Chapter 4 for a short tutorial.

javascript:displayWindow('images/02-01.jpg',500,296)
javascript:displayWindow('images/02-01.jpg',500,296)

If your system is configured properly, you should have the following directories in your root directory:

 bin/ dev/ home/ mnt/ sbin/ var/

 boot/ dos/ lib/ proc/ tmp/

 cdrom/ etc/ lost+found/ root/ usr/

If you’ve installed Slackware from the CD-ROM, and then the system refuses to see the drive when you
reboot, you’ll need to install a new kernel or add the support through loadable kernel modules.

Previous Table of Contents Next

-->

Previous Table of Contents Next

Using Kernel Modules

The kernels used in Slackware are designed to support the hardware needed to get Linux installed. Once
you’ve installed and rebooted your system, you may find that your kernel lacks support for some of your
hardware, such as a CD-ROM drive or Ethernet card. In this case, there are a couple of ways you can
add this support. The traditional way would be to compile a custom Linux kernel that includes drivers
for all your hardware. This requires that you have the Linux source code and C compiler installed and
that you know exactly which options need to be compiled into your kernel. In short, compiling a custom
kernel can be a rather difficult task for Linux beginners.

Kernel modules to the rescue! If you’ve installed device drivers before on MS-DOS, you’ll probably
find this a familiar way of adding support—just think of the module configuration file /etc/rc.d/rc.
modules as being the Linux counterpart of DOS’s CONFIG.SYS file. To add support for new
hardware, you need to edit the file and uncomment the lines that load the needed support. As an
example, let’s look at the section of the file used to load CD-ROM support, as shown in Figure 2.5.

These modules add CD-ROM drive support. Most of these drivers will
probe

for the I/O address and IRQ of the drive automatically if the
parameters

to configure them are omitted. Typically the I/O address will be
specified

in hexadecimal, e.g.: cm206=0x300,11

#

#/sbin/modprobe aztcd aztcd=<I/O address>

#/sbin/modprobe cdu31a cdu31a_port=<I/O address>
cdu31a_irq=<interrupt>

#/sbin/modprobe cm206 cm206=<I/O address>,<IRQ>

#/sbin/modprobe gscd gscd=<I/O address>

#/sbin/modprobe mcd mcd=<I/O address>,<IRQ>

#/sbin/modprobe mcdx mcdx=<I/O address>,<IRQ>

#/sbin/modprobe optcd optcd=<I/O address>

Below, this last number is "1" for SoundBlaster Pro card, or "0"
for a clone.

#/sbin/modprobe sbpcd sbpcd=<I/O address>,1

#/sbin/modprobe sonycd535 sonycd535=<I/O address>

#/sbin/modprobe sjcd sjcd=<I/O address>

Figure 2.5 A section of the /etc/rc.d/rc.modules file.

You’ll notice that each of the lines starts with #. In most Linux configuration files, any line beginning
with # is ignored, much like lines in DOS configuration files that begin with REM. To activate support
for one of these devices, you’ll need to remove the # from the beginning of the line and edit the line to
include any extra information about your hardware needed by the kernel module. For example, if your
machine needs support for a SoundBlaster CD-ROM drive on port 0x300, you’d need to edit the line for
sbpcd support so that it looks like this:

 /sbin/modprobe sbpcd sbpcd=0x300,1

Then, the next time you boot your machine, the sbpcd module will be loaded, and you’ll be able to use
your drive. Drivers for nearly every device supported by Linux can be added in a similar fashion.

NOTE: If you use kernel modules and decide later to upgrade your kernel, you’ll need to
upgrade your kernel modules as well. When configuring the kernel, select M instead of Y to build
selected drivers as kernel modules instead of building them into the kernel. Once you’ve compiled
your kernel with:

make dep ; make clean ; make zImage

you can compile and install the kernel modules with the command:

make modules ; make modules_install

The modules will be installed in a directory named for the running kernel—if you’re running
Linux 2.0.0, you’ll find them under /lib/modules/2.0.0.

Looking for Help

Most UNIX systems have an online-manual page system, and Linux is no exception. You can use the
man command to summon information about specific commands:

 darkstar:~# man man

Online-manual pages aren’t organized by topic; they’re organized by specific command.

NOTE: There are other informational sources included with the Linux operating system. They’ll
be discussed in Chapter 5.

Shutting Linux Down

Like any good UNIX, Linux responds to the shutdown command. You’ll need to provide it with a
command-like parameter and an amount of time to wait before actually shutting the system down. This
may seem odd if you’re used to working alone on a PC, but the shutdown command is usually saved for
serious shutdowns, as most UNIX installations support many users and rarely shutdown. In fact, you
must be logged in as root in order to use the shutdown command. Use the following command line:

 $ shutdown -r now

This shuts down the system immediately.

WARNING: Don’t just turn off the power to turn off a Linux system. This can cause damage to
important files.

An alternative method of shutting down Linux is the old tried-and-true PC Ctrl-Alt-Del sequence,
which is used to reboot a system. When running Linux, this sequence performs the same functions as
shutdown -r now. When the PC cycles to reboot, simply turn it off. Despite what others may claim, this
is a perfectly acceptable way to shutdown a Linux system.

Previous Table of Contents Next

-->

Previous Table of Contents Next

What to Do if Things Go Wrong

For the most part, installation of Linux from the accompanying CD-ROMs is a pretty straightforward
proposition, and you shouldn’t have many problems. However, there may be some cases when you run
into problems when you reboot the Linux system after installation. These problems may include:

• You’re told that the system is out of memory. You’ll probably run into this problem if you’re
operating with 4 megabytes of RAM or less.
• Your system hangs when you first run Linux. In these situations, you’ll want to watch the
screen closely for error messages. Sometimes Linux will be seeking a device at a specific address
(say, a CD-ROM drive) and instead find a network card. In these situations, Linux will hang.
You’ll need to tell Linux to look for the device at the address on your system, which requires that
you send an option line to Linux upon bootup. This is a situation that’s covered in the many
documents included on the CD-ROMs.

Other Configuration Procedures

Now that you’ve got Linux basically installed and running, you can take the time to set up some system
peripherals. These include printers, sound cards, and (for laptop users) PCMCIA devices.

Setting Up a Printer

When you installed Slackware, you were asked about the location of your printer. This information was
translated into the UNIX equivalent; a printer on the first parallel port is assigned a device name of /dev/
lp0. Similarly, if you’re using a serial printer (which, thank goodness, are getting rarer and rarer), it will
probably be assigned a device name of /dev/ttyS1.

This simple configuration means that you can immediately print ASCII characters, with the Linux
system treating your printer like a simple line printer. Printing is actually a more involved process than
you might think. We’ll cover printing in Chapter 4, but you should be aware right now that printing in
Linux involves the following steps:

• When your computer boots, the lpd daemon runs, looking at the /etc/printcap to see what
printer you’re using; the process continues to run throughout your Linux computing session.
• When you print a document with lpr, the lpd command actually handles the print job.
• To change anything in the printing process (like when you want to kill or suspend print jobs),
the lpc and lprm commands are used to talk with the lpd daemon.

Obviously, you’ll want to make sure that /etc/printcap contains correct information about your printer.
When you look at it in a text editor like elvis or emacs, you’ll see that all the lines are commented out
with # characters. Most popular printers are listed in this file (such as HP LaserJets), and if you
uncomment out the lines specific to your printer, you should be able to use it.

It’s important to get this information correct, because Linux printers that aren’t configured properly have
a tendency to suffer from the “staircase effect,” where lines are staggered at the beginning:

We hate the staircase effect.

 It makes our documents look really stupid.

 And it makes it hard for us to do our work properly.

 In fact, we find that we don't print things out

when our printer is misconfigured.

More information about printing in Linux can be found on the first CD-ROM, in the PRINTING-
HOWTO.

Setting Up a Sound Card

As installed, Slackware includes no support for the sound component of sound boards. Yet many of you
installed kernels that supported sound boards, like the sbpcd kernel used for systems with a CD-ROM
attached to the sound board. What gives?

When you install one of these kernels, you’re actually making sure that the CD-ROM attached to the
sound board will work, not the sound board itself. To actually use one of these sound boards, you’ll need
to recompile a kernel that supports a sound board.

Why would you do this? Well, maybe you’re a dedicated Internet surfer and you want to be able to use
the RealAudio streaming-audio player on your machine (yes, there is a Linux version; check out http://
www.realaudio.com). Or maybe you’re a dedicated gamesperson and you want to experience the audio
gore of DOOM. Or maybe you want to play musical CDs using some of the tools we discuss in Chapter
4.

To add sound support, you’ll want to recompile a Linux kernel specific to your needs, a process we
explained earlier in the section entitled “Recompiling a Kernel.” In step 2 of that process, you’ll be

http://www.realaudio.com/
http://www.realaudio.com/

asked to specify components that you’ll need. There will be a line in that process requiring a positive
response from you:

 Sound card support (CONFIG_SOUND) [M/n/y/?]

You’ll answer y (for yes).

After that process is completed, another configuration script will be run, going through a list of sound
cards and asking you to specify your sound card. The questions are very specific; you’ll be asked about
every sound board listed in Chapter 1, so be patient and wait for your sound board to be listed.

WARNING: Be careful about sound cards that are advertised as being “compatible” with
popular sound cards, such as the SoundBlaster from Creative Labs. Compatibility can mean two
different things: One level of compatibility means that the hardware is exactly the same as a
popular model, while the other means that a computer can be tricked, usually with special drivers,
to think that it’s using a clone instead of the popular model. In the second case, these special
drivers run under DOS or Windows and will be worthless under Linux.

After saying yes to a specific sound card, you may be asked about your sound card and where it’s
actually found on the computer system, meaning the I/O address, IRQ, and DMA. (If you don’t know
this, you better start reading the documentation.) You may also be asked to supply a file used to
initialize the card; this information will be incorporated into the kernel. These files should be found on
installation diskettes that ship with your sound card.

Previous Table of Contents Next

-->

Previous Table of Contents Next

After you recompile the kernel and reboot the machine, you’ll want to make sure that the sound card
installed properly. When the new kernel boots, there should be a line or two pertaining to the sound
card; if these lines pass through, then the system at least recognized that the card was present. (This is
also your first indication that there’s a problem; bad configuration information will cause an error
message.) You can also check the file /dev/sndstat to see if a sound card installed and the /proc/devices
to see that the following device line is installed:

 25 sound

More detailed information can be found in the SOUND-HOWTO on the first CD-ROM.

NOTE: If you’re using Loadlin and first booting DOS (where the sound card is already
installed), you may find that your sound board works without any additional customization. Test
the board before reinstalling a kernel.

Working with PCMCIA Devices

The Slackware installation prompts you for the installation of PCMCIA devices with Card Services.
This will save you many steps that are best avoided, such as the recompilation of a kernel.

In fact, one of the nicest things about Card Services is that it’s relatively painless (thanks to David Hinds
for all his work on this) after you’ve installed a kernel. During the boot process, Card Services will
avoid hardware conflicts and work with a wide range of PCMCIA devices automatically. The trick, of
course, is to use a PCMCIA device that generally conforms to PCMCIA standards. In our experience,
most new hardware conforms to these standards, but some older laptops were rather liberal as to their
interpretation of PCMCIA support.

If your PCMCIA device doesn’t work, you’ll need to look through the excellent PCMCIA-HOWTO on
the first CD-ROM for information about recompiling a new kernel and adding support.

Working with a UPS

Slackware supports uninterruptible power supplies, or UPSes. This support is rather easy to implement.
First you get a UPS, hook it up to your PC, and then run a Linux daemon called powerd that monitors

the power situation and shuts down the system if necessary. (It will also halt the shutdown if the power
appears in time.)

For more information, check out the man page for the powerd command and the UPS-HOWTO on the
first CD-ROM.

Adaptive Technologies and Linux

After the Americans with Disabilities Act (ADA) was passed, the corporate world was forced to use
adaptive technologies to open the workplace to all qualified workers. Linux supports a number of ways
to implement adaptive technologies. Some involve changing the settings on existing Linux tools, while
others involve special software tools, like xzoom, used to magnify a portion of the screen, and
emacspeak, used to read the contents of a document in emacs (both of which we’ve included on the
second CD-ROM).

More information about adaptive technologies can be found in the ADAPTIVE-HOWTO document on
the first CD-ROM.

Using Linux with Ham Radio

Amazingly enough, Linux is one of the few operating systems that will work smoothly with ham radio.
(Think of ham radio as an airborne precursor to the Internet, if you’re unfamiliar with the concept.)
You’ll want to check out the AV25-HOWTO (found on the first CD-ROM) for more information.

Making Linux Work with Your Language

Us English-speakers assume that the rest of the world speaks English (you probably do, to some extent
at least, if you’ve gotten this far). However, if you’re not a native English-speaker and want to adapt
Linux for your own language, you may want to check out the many HOWTOs on the first CD-ROM.

Languages covered in specific HOWTOs include: Cyrillic (used in Russia), Danish, Finnish, German,
Hebrew, Polish, and Portuguese.

Summary

This chapter covered Linux installation and configuration. Basically, the process is:

• Create boot and root floppies.
• Prepare your hard drive for installation with DOS utilities.
• Boot Linux from boot and root floppies.
• Prepare your hard drive for installation with Linux utilities.

• Install Linux from the CD-ROM.

None of these steps is exceptionally complicated; if you’re attentive at all to detail, you’ll have no
problem following the steps detailed here.

The chapter ended with a few of the basic commands you’ll need after installing Linux, such as adduser
and shutdown.

The next chapter introduces XFree86, a version of the X Window System optimized for PCs and
compatibles.

Previous Table of Contents Next

-->

Previous Table of Contents Next

Chapter 3
Installing and Configuring XFree86

This chapter covers:

• An overview of the X Window System
• X Window on the network
• An overview of X on Linux
• XFree86 and Linux
• X and window managers
• Supported chipsets
• How XFree86 works
• Installing XFree86
• Setting up the proper X server executable
• Some initial configuration details
• Configuring xterm
• Setting up an X login screen
• Alternatively, starting X at login time only
• Screen background: solid colors and images
• The X font server
• The fvwm window manager

The X Window System

Simply put, the X Window System, or just X, provides graphics on UNIX. (It’s never called X
Windows; to call it X Windows is a sign of ignorance.) Although X runs on many more operating
systems than UNIX, such as Windows NT, Windows, MacOS, and DOS, X is by far the de facto
graphics system on UNIX. As such, X tends to be confusing for anyone with experience in the personal
computer world.

Because X tends to confuse, this chapter starts with an overview of both the X Window System and X
on Linux. If you’re experienced with X in general, jump ahead to the section covering X on Linux for a
rundown of how X differs on Linux. After that, we tackle the toughest part of X: installing and
configuring it for your hardware. We’ve all been lulled by the ubiquitous PC hardware and assume that
because Microsoft Windows runs with just about every graphics card, so should Linux. Linux does to an
extent, but you pay a price in added complexity.

The X Window System began life as an academic exercise at the Massachusetts Institute of
Technology’s Project Athena. The goal was to link a motley crew of disparate workstations from various
vendors. Instead of providing the link at the operating-system level, the decision was made to create a C-
based graphical windowing layer that could exist with any operating system. And so the X Window
System was born.

Now under the supervision of the not-for-profit X Consortium Inc., the X Window System is made
available to the computing public at large, which has engendered its widespread adoption in the UNIX
world. Virtually every UNIX vendor supports X on some level. The popular interfaces CDE/Motif and
OpenWindows, as well as the Common Desktop Environment (CDE), are based directly on X.

X on the Network

True to its UNIX roots, the X Window System runs graphics with multiple processes. The main process,
simply called X, is the X server itself. The server deals with local requests (thus its usage on a single-
user Linux workstation) and TCP/IP-based network requests. Because of this networking capability, it’s
possible to run an X application on one workstation and display the results of the application on another
workstation. You could, for example, save your local computing resources for something important
while running Doom on your boss’s workstation and displaying the game on yours. You get to play the
game; your boss’s system provides the CPU horsepower.

The X server controls the monitor, keyboard, and mouse and allows graphics applications—called X
clients—to create windows and draw into them. On the face of it, this seems so basic that it shouldn’t
require any explanation. But, as is true of most of UNIX, X takes a simple concept and makes it
difficult. You benefit from the complexity of X, but it can make it tough to get going.

The X server process is the only process allowed to draw dots on the screen or track the mouse. X
application programs then connect to the X server via an interprocess communication link, usually some
form of TCP/IP network socket (see Chapter 8 for more on networking). Because X uses a network link,
programs running on other machines connected by a network can display on your workstation.

Many programs can connect to the same X server at the same time, allowing you to run multiple
applications on the same screen—again, a basic fact you’ve probably taken for granted. One of these X
applications you run must be a window manager. (Technically, you don’t have to run a window
manager, but it makes things difficult if you don’t.)

Previous Table of Contents Next

-->

Previous Table of Contents Next

The Window Manager

Unlike the Macintosh and Windows environments, X makes the window manager a separate process. In
fact, a window manager is merely an X application program, although it’s a special application. By
separating the windowing system from the window manager, you are free to run any window manager
that suits your needs. The main purpose of a window manager is to control how you move and resize
windows on your Linux display. The window manager also creates the titlebar at the top of your
application windows.

The key concept if you’re new to X is that the window manager—not the application—owns the
window’s titlebar. This is really odd if you come from the Windows or Macintosh worlds. To show this,
we’ll run the same X application, xman (which displays UNIX online manuals—a very useful program,
indeed), under different window managers.

The fvwm window manager provides a vaguely Motif-like look for the window titlebars, as we show in
Figure 3.1.

Figure 3.1 Xman running under the fvwm window manager.

If we switch to olwm, we see an Open Look visual display, as shown in Figure 3.2.

Figure 3.2 Xman running under the olwm window manager.

If we switch yet again, to twm, we see yet another look for the titlebar of the application, as shown in
Figure 3.3.

Figure 3.3 Xman running under the twm window manager.

javascript:displayWindow('images/03-01.jpg',546,240)
javascript:displayWindow('images/03-01.jpg',546,240)
javascript:displayWindow('images/03-02.jpg',544,240)
javascript:displayWindow('images/03-02.jpg',544,240)
javascript:displayWindow('images/03-03.jpg',523,227)
javascript:displayWindow('images/03-03.jpg',523,227)

With all three window managers, the xman program itself looks the same; it’s only the window-
manager-controlled titlebar that’s different.

X also follows the policy of providing the means to do neat things—the mechanism—without making
any decisions about what is good for the user—the policy. This mechanism without policy approach has
led to a great deal of innovation in the X and UNIX worlds, but at a price of difficult-to-configure,
poorly done interfaces across the board. Slackware Linux comes with a number of window managers,
including those listed in Table 3.1, and we’ve taken the liberty of adding a few free window managers to
the second CD-ROM. (Unless noted otherwise, all the window managers here are part of the core
Slackware Linux distribution.) You’re free to choose the window manager you desire and change at any
time.

Table 3.1Linux Window Managers

Window Manager Description

bwm Bowman Window Manager, used to provide a Nextstep-type interface,
which we included on the second CD-ROM

fvwm The most common window manager, presenting a Motif-like look

fvwm95 An add-on to fvwm that makes it look like Windows 95, which we
included on the second CD-ROM

twm The bared-boned Tab Window Manager

olwm Open Look Window Manager, from Sun Microsystems

olvwm A virtual-screen version of olwm

Most commercial UNIX systems run mwm, the Motif window manager, or a close variant. You’ll find
this on workstations from Hewlett-Packard, SCO, IBM, Silicon Graphics, and even Sun Microsystems
(with the Common Desktop Environment). Because mwm (and the rest of Motif, including the
programming libraries) is a commercial product, you won’t see mwm on Linux unless you purchase it
separately (see Appendix A for details). Because something so fundamental to most UNIX systems
remains different on Linux, this may make getting used to Linux harder, especially if you work on other
UNIX systems. Because of this common problem, we’ll show you how to configure fvwm, the default
window manager on Linux, to look and act more like the Motif window manager, to help make you feel
at home on Linux. See the section on “Toward a Motif-Like Look and Feel” later in this chapter for the
details.

Previous Table of Contents Next

-->

Previous Table of Contents Next

X on Linux

X is very hardware-dependent. In the UNIX workstation world, you don’t see many problems with this,
because the UNIX vendors maintain tight control over the hardware and do the hard work of supporting
X for that hardware.

The PC realm, though, is different. You have zillions of vendors and a huge number of combinations of
various graphics cards, monitors, buses, even lowly mice. So, as we’ll repeat again and again, you need
to know the intimate details of your hardware in order to get the X Window System up and running. If
you’re used to the UNIX workstation world, this will come as a rude surprise. If you’ve already charted
Chapters 1 and 2 of this book, it will less of a surprise.

X on Linux is actually in the form of XFree86, a public project devoted to bringing X Window to PC-
based Unices. While there are some changes between a straight X Window System installation on a
workstation and XFree86, you probably won’t notice these differences.

How XFree86 Works

Remember that X is both the X server (also named X) and a number of X application programs (also
called clients). To get X going, you must first start the X server and then start a number of X
applications. Almost always, one of these X applications will be a window manager.

To start X, you must first login your Linux system, such as in the following:

 Welcome to Linux 2.0.29

 yonsen login:

 Password:

Once you login and get the Linux shell prompt, you can start X with the startx script:

 yonsen~#: startx

This assumes that XFree86 has been configured correctly for your Linux installation, a process we’ll go
over in a bit.

The startx script runs a program called xinit, which starts up the X server, /usr/X11R6/bin/X (you may
be more familiar with /usr/bin/X on most other UNIX systems), and looks for a file named .xinitrc
(note the leading dot) in your home directory. The .xinitrc file is a shell script that launches all the X
applications you want. For example, our .xinitrc file launches a number of instances of the xterm
program, which provides a shell window, and the rounded clock called oclock, as shown in Figure 3.4.

Figure 3.4 A typical X environment started from the .xinitrc file.

Before any of these programs is launched, though, the X server must be started, a task also handled by
xinit.

The X server looks for the XFree86 configuration file—the most critical file for X on your system. This
file, usually named XF86Config and stored in /usr/X11R6/lib/X11 (symbolically linked to /var/X11R6/
lib), is a specially formatted file that tells XFree86 about your system’s hardware.

The hardest part about installing XFree86 on your system will be in fleshing out this file. There are tools
that help, but the process is still dangerous and fraught with error.

The XF86Config file contains six sections, each of which describes some part of your system to the X
server. We list these sections in Table 3.2.

Table 3.2Sections in the XF86ConfigFile

Section Usage

Files Tells where font and RGB files are located

ServerFlags Special X server flags like DontZap, which turns off the Ctrl-Alt-
Backspace sequence that aborts the X server

Keyboard What kind of keyboard you have

Pointer Information on your mouse

Monitor Excruciating details about your monitor

Device Graphics card

javascript:displayWindow('images/03-04.jpg',999,746)
javascript:displayWindow('images/03-04.jpg',999,746)

Screen Combined card and monitor

Installing XFree86

To install and properly set up XFree86, a scary task under the best of conditions, you need to go through
the following steps:

• Determine your system configuration.
• Set up the proper X server for your graphics card.
• Fill out the XF86Config file.
• Test that you can run X.
• Tune your XF86Config file.

We’ll cover all these steps in the rest of this chapter.

Virtually all of XFree86—including the version with the Slackware Linux on the accompanying CD-
ROMs—installs into the /usr/X11R6 directory. Note that many other directories, such as /usr/bin/X11
and /usr/lib/X11, will be symbolic links into locations in /usr/X11R6.

If you installed Linux and XFree86 from the accompanying CD-ROM, all the files are in the right place.

If you picked up an update to XFree86 from the Internet, then you’ll likely need to unpack the collected
files. Check the README file that was in the same directory as the XFree86 files you grabbed. Most
likely, the files are compressed tar archives. For example, if you see a file like X312bin.tar.gz, you
know that this file was compressed with GNU zip (.gz) from a tar file (.tar). To extract this file, use the
following commands:

 mv X312bin.tar.gz /usr/X11R6

 cd /usr/X11R6

 gunzip X312bin.tar.gz

 tar xvof X312bin.tar

The first two commands move the XFree86 file (and your current working directory) to the /usr/X11R6
directory, where Linux expects X files to be located.

Especially if you acquired XFree86 over the Internet, you must untar any XFree86 archives as the root
user. Otherwise, you’ll find that XFree86 does not install properly.

If you load XFree86 from the Slackware CD-ROM and use Slackware’s installation program, you
shouldn’t have any problems.

Previous Table of Contents Next

-->

Previous Table of Contents Next

Setting Up XFree86

Because there’s so much variety in PC graphics hardware and because doing something wrong can
actually destroy your hardware (in theory, anyway; we’re rather credulous of tales of exploding monitors
and such), XFree86 ships in a mode that prevents you from running X. This fact strikes us as bizarre, but
setting up X is probably the hardest thing you have to do to get Linux up and running.

Before you start setting up XFree86, track down every piece of documentation that came with your
monitor and graphics card. You’ll need to know some obscure values about your monitor, such as the
horizontal and vertical frequency ranges.

If you can’t find any of this information, you may want to pop open the machine and check the text
written on your graphics card—there’s often a lot of useful information there. Even if this fails and you
can’t find out anything about your graphics card, you still have a chance to run X. If your graphics card
can support standard Super VGA, you should be able to use the example XF86Config file that comes
with XFree86.

We list the graphics cards supported by XFree86 in Tables 3.3 and 3.4. Table 3.3 lists the accelerated
chipsets and Table 3.4 the Super VGA chipsets.

Table 3.3Accelerated Cards and Chipsets Supported by XFree86

Type Chips and Cards

8514/A 8514/A and true clones

ATI Mach8, Mach32, Mach64

Cirrus CLGD5420, CLGD5422, CLGD5424, CLGD5426, CLGD5428,
CLGD5429, CLGD5430, CLGD5434

IBM XGA-2

IIT AGX-014, AGX-015, AGX-016

Oak Tech. OTI087

S3 86C911, 86C924, 86C801, 86C805, 86C805i, 86C928, 86C864,
86C964, 86C732, 86C764, 86C868, 86C968

Tseng ET4000/W32, ET4000/W32i, ET4000/W32p

Weitek P9000

Western Digital WD90C31, WD90C33

The Cirrus, Oak, and Western Digital cards are supported in the Super VGA server, XF86_SVGA. The
other types each have their own X server.

The Super VGA server, XF86_SVGA, supports a whole range of graphics cards and chipsets, which are
listed in Table 3.4.

Table 3.4Super VGA Chipsets Supported by the XF86_SVGAServer

Vendor Chipsets

ARK Logic ARK1000PV, ARK2000PV

ATI 18800, 18800-1, 28800-2, 28800-4, 28800-5, 28800-6, 68800-3,
68800-6, 68800AX, 68800LX, 88800CX, 88800

Advance Logic ALG2101, ALG2228, ALG2301, ALG2302, ALG2308,
ALG2401

Chips & Technology 65520, 65530, 65540, 65545

Cirrus Logic CLGD5420, CLGD5422, CLGD5424, CLGD5426, CLGD5428,
CLGD5429, CLGD5430, CLGD5434, CLGD6205, CLGD6215,
CLGD6225, CLGD6235, CLGD6410, CLGD6412, CLGD6420,
CLGD6440

Compaq AVGA

Genoa GVGA

MX MX68000, MX680010

NCR 77C22, 77C22E, 77C22E+

Oak OTI067, OTI077, OTI087

RealTek RTG3106

Tseng ET3000, ET4000AX, ET4000/W32

Western Digital/Paradise PVGA1

Western Digital WD90C00, WD90C10, WD90C11, WD90C24, WD90C24A,
WD90C30, WD90C31, WD90C33

Trident TVGA8800CS, TVGA8900B, TVGA8900C, TVGA8900CL,
TVGA9000, TVGA9000i, TVGA9100B, TVGA9200CX,
TVGA9320, TVGA9400CX, TVGA9420

Video 7/Headland Technologies HT216-32

NOTE: Each release of XFree86 supports more and more cards. If your card or chipset isn’t
listed here, don’t give up hope. You may need to get a new release of XFree86, though. (When
this book was written, the most recent release of XFree86 was 3.2, and that’s the version on the
accompanying CD-ROM.)

To see which chipset your graphics card uses, you’ll need to look in the documentation that came with
your graphics card.

You’ll need about 50MB of disk space for XFree86, and you should have at least 16MB of RAM to run
X effectively. You can launch X and perform some basic functions with 8MB of RAM, but you’ll soon
run into some performance problems with limited RAM. To compound matters, you won’t be told that
you’re running low on RAM; your chosen X window manager will simply fail to respond to your
commands.

Once you’ve determined your system configuration, the next step is to set up the proper X server for
your graphics card. XFree86 ships with a number of X servers, each compiled with drivers for a certain
type of graphics card or chipset. Each of these X server executables usually starts with XF86_ and ends
with the type of cards supported. For example, the XF86_SVGA X server is built with support for
standard Super VGA chipsets. XF86_S3 is the X server for S3-based graphics cards.

Previous Table of Contents Next

-->

Previous Table of Contents Next

You’ll need to know which chipset your graphics card has and then figure out which X server to use. We
list the X servers in Table 3.5.

Table 3.5XFree86 X Servers

Filename For Chipsets

XF86_8514 8514/A and true clones

XF86_AGX IIT AGX-014, AGX-015, AGX-016

XF86_Mach8 ATI Mach8

XF86_Mach32 ATI Mach32

XF86_Mach64 ATI Mach64

XF86_Mono Monochrome VGA, also Hercules, Hyundai HGC1280, Sigma
LaserView, Visa, and Apollo monochrome cards

XF86_P9000 Weitek P9000

XF86_S3 S3-based cards

XF86_S3V S3 VIRGE-based cards

XF86_SVGA Super VGA

XF86_VGA16 16-color VGA server

XF86_W32 Tseng ET4000/W32, ET4000/W32i, ET4000/W32p

The reason you have to know which X server to use is that the wrong server at best won’t work and at
worst may damage your system.

XFree86 is set up to run only one X server, the program named X and stored in /usr/X11R6/bin.
Because of this, you need to link the X server you chose earlier to the file named X. The following
command, when run as root user, links the S3 X server we use to the standard named X:

 ln -sf /usr/X11R6/bin/XF86_S3 /usr/X11R6/bin/X

All the XFree86 files are stored in /usr/X11R6, but there are many links to other parts of the filesystem.
For example, /usr/bin/X1 is linked to /usr/X11R6/bin, where the X binaries really reside. The

Slackware installation should have taken care of these links for you.

Now you have the proper X server set up to run when you start X. The next step is to tell XFree86 about
your hardware in even more detail by filling out the infamous XF86Config file.

Setting Up the XF86Config File

The XF86Config file, located in /usr/lib/X11 (really a link to /usr/X11R6/ lib/X11), is read when the X
server starts up; it describes your graphics hardware and other configuration options for XFree86.

When you’ve gotten to this step, there are two routes you can take. You can set up a generic
XF86Config file for Super VGA graphics, or you can tune the XF86Config file for your particular card.
We’ll cover both routes in this chapter. We strongly advise you to configure the XF86Config file for
your graphics card. Unfortunately, this has proven (in our experience) to be the most daunting task under
Linux. Nothing else has been this difficult. So be warned—dangerous waters lie ahead.

The main reason this is a difficult task is that virtually all graphics-card vendors write device drivers for
Microsoft Windows, but virtually none write drivers for Linux. Because of this, you’re left with the task
of setting up your system to run with the graphics card.

Hardware, Hardware, Hardware

We keep repeating the mantra that you need to know your system’s hardware inside and out. If you
know your hardware, you can get the most out of X. If you don’t, you run the danger of destroying your
system.

WARNING: Yes, we’ll repeat that: Making a mistake in your X configuration can result in
damaged hardware.

Unless you’re independently wealthy, this should cause you to pause for a moment. Take advantage of
the time and go dig up all the documentation on your mouse, monitor, and graphics card. This can be
hard. On a system that’s a few years old, you may not be able to find everything. On a new system, your
computer case may be full of no-name, off-brand hardware and the documentation may tell you nothing
of value.

We’ve found that some newer systems just tell you the amount of video RAM and how to run DOS
terminate-and-stay-resident (TSR) programs to configure the card, which is not very useful for a non-
BIOS operating system like Linux. Let’s face it: the vast majority of PC users run DOS and Microsoft
Windows, not Linux. As one of the few pioneers, your task is harder. Try examining the original boxes
the system came in. On at least one of our prepackaged systems, we found more technical information

about the graphics card (especially the chipset) on the box than in all the printed manuals that came with
the system.

Previous Table of Contents Next

-->

Previous Table of Contents Next

Laptops and X

If your hardware includes a laptop computer, you may be able to run X on it. Many others have taken
the time to configure X on a wide range of laptops. If you have a ThinkPad laptop, for example, there’s a
wealth of information specific to Linux on the World Wide Web at URL http://peipa.essex.ac.uk/tp-
linux/tp-linux.html.

ON THE CD-ROMS: This Web page is available on the CD-ROMs in the /docs directory.

This Web page also contains a number of X configuration files for various ThinkPad models.

You are likely to have problems with the ThinkPad 700, 720, and any other MCA-architecture
machines, as Linux does not yet support MCA. The Linux Laptop Home Page (http://www.cs.utexas.edu/
users/kharker/linux-laptop/) has a lot of information about setting up X with laptops.

WARNING: If you have a model 760, you may have problems with the latest editions of
XFree86. See the Linux Notebook Web page at URL http://www.castle.net/X-notebook/
index_linux.html. Because versions of X change rapidly, this problem may already be fixed.

Some of the key bits of information you want to discover about your system are listed in Table 3.6.

Table 3.6Information You Need to Know about Your System

Aspect What You Need to Know

Card Vendor and model, of course

Card Chipset, such as S3

Card Amount of video RAM, such as 1 or 2MB

Card RAMDAC, if one is used, such as ATT20C490

Monitor Bandwidth in megahertz (MHz), such as 25.2

Monitor Horizontal Sync range, such as 31.5–64.3 kilohertz (kHz)

Monitor Vertical refresh range, such as 55–120 Hertz (Hz)

http://peipa.essex.ac.uk/tp-linux/tp-linux.html
http://peipa.essex.ac.uk/tp-linux/tp-linux.html
http://www.cs.utexas.edu/users/kharker/linux-laptop/
http://www.cs.utexas.edu/users/kharker/linux-laptop/
http://www.castle.net/x-notebook/index_linux.html
http://www.castle.net/x-notebook/index_linux.html

Mouse Serial or parallel? If serial, which serial port it’s connected to

Mouse Vendor and model, such as Logitech Firstmouse

Note that some of the more obscure details, such as the RAMDAC, may be described for you in the
XFree86 documentation. XFree86 comes with a description of a number of graphics cards and monitors.
If you’re lucky, you can pull some of these values directly from the XFree86 documentation into your
XF86Config file, the master file that describes your hardware to X.

Normally located in /usr/X11R6/lib/X11, the XF86Config file is an ASCII text file, formatted in a
special way that the XFree86 X server understands. By default, XFree86 searches for this file in a
number of directories, in the following order:

/etc/XF86Config
<Xroot>/lib/X11/XF86Config.hostname
<Xroot>/lib/X11/XF86Config

The <Xroot> is shorthand for the top-level X directory. In Slackware Linux, this is /usr/X11R6.
Previous to release 6 of X11 (hence the X11R6), XFree86’s top directory was /usr/X386.

You can create the XF86Config file with a text editor such as vi or emacs. In most cases, though, you’ll
want to copy an example file to avoid entering the whole thing. Under Slackware, this example file is
named XF86Config.eg. While this example is not ready to go, you can get a lot of useful information
out of it. (See the section on Super VGA.)

In the XF86Config file, each section follows the same basic pattern:

 Section "SectionName"

 data entry...

 ...

 EndSection

The # acts as a comment character, which is very useful in documenting the odd syntax in the
XF86Config file.

In the next sections of this chapter, we’ll cover these six sections in depth and show how you can

automate part of the process by using a program called xf86config.

WARNING: Never use someone else’s XF86Config file. And don’t use the examples we
provide verbatim. Always configure X for your hardware. Wrong data in the file may cause X to
damage your hardware.

Automating the Configuration Process

For a number of years, various programs have attempted to automate the difficult creation of
XF86Config files. So far, though, all have failed miserably for us—that is, until the most recent versions
and a program called xf86config. For the first time, xf86config seems to create a workable XF86Config
file, and we don’t even have any odd hardware.

Before running xf86config, read over each of the following sections which describe the various parts of
the XF86Config file that the xf86config program will be filling in. By having a greater understanding of
the XF86Config file, your success rate with the xf86config program will be much greater.

Because of this, we’ll discuss each of the six sections and then cover using xf86config.

Previous Table of Contents Next

-->

Previous Table of Contents Next

Setting Up Paths in the Configuration File

The Files section is by far the easiest to set up in your XF86Config file. That’s because just about
everybody has the same paths. In the Files section, you need to tell X where the RGB (Red-Green-Blue)
color database file is kept and where the fonts are located. Because both should go in standard locations,
you can simply use the following section in your XF86Config file (in fact, the sample version already
comes this way):

 Section "Files"

 RgbPath "/usr/X11R6/lib/X11/rgb"

 FontPath "/usr/X11R6/lib/X11/fonts/misc/"

 FontPath "/usr/X11R6/lib/X11/fonts/Type1/"

 FontPath "/usr/X11R6/lib/X11/fonts/Speedo/"

 FontPath "/usr/X11R6/lib/X11/fonts/75dpi/"

 FontPath "/usr/X11R6/lib/X11/fonts/100dpi/"

 EndSection

This Files section tells XFree86 that your RGB database is located in /usr/X11R6/lib/X11/ and that the
fonts are located in /usr/X11R6/ lib/X11/fonts/. These are the standard locations for both. One tricky
thing to note is that you may not have loaded all the font directories (we recommend you do, though).
Because of this, you should check the /usr/X11R6/lib/X11/fonts/ directory:

 $ ls /usr/X11R6/lib/X11/fonts/

 100dpi/ 75dpi/ PEX/ Speedo/ Type1/ misc/

On our system, we have all the directories listed and a PEX directory for PEX fonts (you can ignore this

for now; see Appendix B for more on PEX, the 3D extension to X). What you should do is delete any
entries in the XF86Config file if you don’t have the corresponding font directory. For example, if you
did not load the 100-dots-per-inch fonts (the 100dpi) directory, then your Files section should look like:

 Section "Files"

 RgbPath "/usr/X11R6/lib/X11/rgb"

 FontPath "/usr/X11R6/lib/X11/fonts/misc/"

 FontPath "/usr/X11R6/lib/X11/fonts/Type1/"

 FontPath "/usr/X11R6/lib/X11/fonts/Speedo/"

 FontPath "/usr/X11R6/lib/X11/fonts/75dpi/"

 EndSection

We removed the entry for 100dpi fonts.

When running xf86config, you should say you do not intend to use the X font server, even if you’d like
to. If the font server isn’t running before you start X, then your system may lock up. We found it’s much
easier to split the problem. First, get X up and running. Then, configure the X font server (which
provides scaled fonts). You may have to go back and edit the XF86Config file, but that’s a lot easier
than having your system lock up.

Configuring the ServerFlags Section

After the Files section comes the ServerFlags section. Again, you rarely have to do much with this. In
fact, we normally have everything commented out in this section. The main options you can set here are
listed in Table 3.7.

Table 3.7Server Flags Options

Option Meaning

NoTrapSignals Core dumps X when a signal arrives; useful for debugging

DontZap Disables Ctrl-Alt-Backspace

DontZoom Disables switching between graphics modes

Most of these flags work backwards. If you uncomment the entry, it turns the feature off. By default, we
comment out (leaving on) the two “don’t” features. We also comment out (leaving off) the
NoTrapSignals option.

We like being able to kill an errant X server by simply holding down Ctrl-Alt-Backspace, so we always
comment out DontZap. If you turn on DontZap, you are disabling this feature.

DontZoom disables the keyboard sequences that allow you to switch between graphics modes. We find
this switching to be essential in testing our XF86Config files, so we always leave this feature on by
commenting it out in the XF86Config file.

Our ServerFlags section, with everything commented out, looks like:

 Section "ServerFlags"

 # NoTrapSignals

 # DontZap

 # DontZoom

 EndSection

Just like in UNIX shell scripts, the # character marks a comment line in the XF86Config file.

Previous Table of Contents Next

-->

Previous Table of Contents Next

Configuring the Keyboard Section

The Keyboard section allows you to set up a number of options about your keyboard, which we list in
Table 3.8.

Table 3.8Options in the Keyboard Section

Option Usage

Protocol Standard (the default) or Xqueue

AutoRepeat delay rate Sets up the keyboard auto-repeat delay and rate

ServerNumLock Asks X server to handle NumLock internally

LeftAlt key Overrides default for left Alt key (Meta)

RightAlt key Overrides default for right Alt key (Meta)

ScrollLock key Overrides default for ScrollLock key (Compose)

RightCtl key Overrides default for right Ctrl key (Control)

XLeds Allows programs to use LEDs, rather than keyboard

VTSysReq Uses Alt-SysRq-Fn to switch to virtual terminals

VTInit command Runs command passed to /bin/sh -c, when X server starts up and
has opened its virtual terminal

You almost never want to run the Xqueue protocol, which uses a UNIX SVR3 or SVR4 event queue
driver. With Linux, skip this option.

With X11 Release 6, X finally handles the NumLock key properly. You probably don’t need to worry
about the ServerNumLock protocol unless you have older applications that prove to be a problem.

For the key-mapping overrides, you can set each to one of the following values:

• Compose
• Control
• Meta
• ModeShift
• ModeLock

• ScrollLock

This is probably more than you want to know about your keyboard. See the online-manual page for
XF86Config for more information on this.

Virtual Terminals

Linux supports virtual terminals. A virtual terminal is a pseudo-tty UNIX terminal connected to your
screen. X uses up one virtual terminal, but you may often have many more.

Each virtual terminal takes over your entire display and presents a traditional UNIX textual terminal,
much like what you see when you login. A special key sequence allows you to change between virtual
terminals. When you do this, the screen gets cleared and you see the next virtual terminal.

The magic key sequence to change to a virtual terminal is Alt-Fn, where Fn is one of your keyboard’s
function keys, such as F1. But watch out: In X, the magic key sequence to change to a virtual terminal is
not Alt-Fn, but rather is Ctrl-Alt-Fn. The discrepancy occurs because most window managers capture
all Alt-Fn keys.

NOTE: Most laptops have a special Fn key that’s used to provide a second set of functions to the
keyboard function keys. The Fn key on a laptop keyboard should not be confused with the Fn
notation used here.

A virtual terminal is not very worthwhile when you have a whole screen with multiple xterm terminal
windows. The X environment allows you to use the font of your choice, provides a great many lines,
supports a scrollbar, and copies and pastes—none of which the virtual terminals do. So, we only rarely
use a virtual terminal.

But there’s one place where a virtual terminal comes in handy: if your X display gets locked up, you can
often switch to another virtual terminal and kill off all the X processes.

The VTSysReq option in Table 3.8 allows you to use Alt-SysReq-Fn instead of the default Ctrl-Alt-Fn.

Putting this all together, our Keyboard section follows:

 Section "Keyboard"

 Protocol "Standard"

 # Protocol "Xqueue"

 AutoRepeat 500 5

 # ServerNumLock

 # Xleds 1 2 3

 LeftAlt Meta

 RightAlt ModeShift

 # RightCtl Compose

 # ScrollLock ModeLock

 EndSection

Note that we comment out most of it.

Previous Table of Contents Next

-->

Previous Table of Contents Next

Configuring the Pointer Section

The mouse—called pointer in X terminology—is rather easy to set up, but you must watch out for some
tricks. The main reason for this is that many vendors’ mice (e.g., Logitech) are set up to emulate other
vendors’ mice, most notably Microsoft mice. Because of this, you may have to lie about your mouse.

For example, one of our test systems uses a serial Logitech Firstmouse. This mouse was designed by
Logitech to emulate the Microsoft serial mouse. What’s odd is that the Logitech mouse has three buttons
(a very good thing for X, as most X programs expect three-button mice), while the Microsoft serial
mouse sports only two buttons.

When we configure the XF86Config file, we claim our Logitech mouse is really a Microsoft mouse (the
other common choice for Logitech mice is to claim that they are Mouseman mice).

The two key things you must specify for your Pointer section is what kind of mouse, e.g., Microsoft, and
what port, if it’s a serial mouse.

With this, our Pointer section is rather short:

 Section "Pointer"

 Protocol "Microsoft"

 Device "/dev/ttyS0"

 EndSection

Be sure to put in the type of mouse you have and the device it is connected to, rather than merely
copying our configuration.

The protocol must be one of the options listed in Table 3.9.

Table 3.9Pointer Protocols

Protocol

BusMouse

Logitech

Microsoft

MMSeries

Mouseman

MouseSystems

PS/2

MMHitTab

Xqueue

OSMouse

For Logitech mice, you’ll most likely use BusMouse (if a bus mouse); for serial mice, you’ll probably
use the Microsoft or Mouseman protocols, rather than the more obvious Logitech protocol. If your
mouse is connected to a PS/2 port, use the PS/2 protocol. (If you’re using a newer system from a mass
merchandiser like Dell, check the mouse port. Many newer systems feature PS/2 mouse ports, but
they’re not always called PS/2 ports; for example, Dell calls it a mouse port.)

The Xqueue protocol is only used if you set that up for the keyboard, too. We don’t advise using this.
The OSMouse is only for SCO UNIX, not for Linux.

In our case, the mouse is connected to serial port number one, often called com1 in the DOS lexicon. In
true UNIX tradition, however, Linux starts counting serial ports with 0. To specify our mouse is
connected to com1, we use a device name of /dev/ttyS0, the Linux device file for this port. We list
commonly used ports in Table 3.10.

Table 3.10Commonly Used Serial Ports in Linux

Port Device File Name in Linux

com1 /dev/ttyS0

com2 /dev/ttyS1

com3 /dev/ttyS2

com4 /dev/ttyS3

Your system may also have the /dev/mouse device file set up for the mouse port. No matter what device
file you choose, the device must exist beforehand. (On our system, /dev/mouse is a link to /dev/ttyS0.)

The bus mouse device files are listed in Table 3.11.

Table 3.11Bus mouse Device Names

Device Usage

/dev/atibm ATI bus mouse

/dev/logibm Logitech bus mouse

/dev/inportbm Microsoft bus mouse

/dev/psaux PS/2 or Quickport mice

Note that except for the /dev/psaux PS/2 mice, all the bus mice should use a protocol of busmouse.

There are a few more options for the Pointer section, but you’re normally better off leaving them alone.
(We know; we were curious and we managed to mess things up.)

We list the other Pointer options in Table 3.12.

Table 3.12Other Pointer Section Options

Option Usage

BaudRate rate Specifies the baud rate for the serial mouse

Emulate3Buttons Allows a two-button mouse to act like a three-button mouse; the third
button is emulated by pressing both at once

ChordMiddle Fixes a problem with some Logitech Mouseman mice

SampleRate rate Fixes a problem with some Logitech mice

ClearDTR May be required by dual-protocol mice in MouseSystems protocol
mode

ClearRTS May be required by dual-protocol mice in MouseSystems protocol
mode

We generally don’t set the baud rate. When we tried to, the mouse didn’t work. If you do this, it is one
time where the Ctrl-Alt-Backspace zapping sequence comes in handy.

For best results in X, you want to have a three-button mouse. Many X programs assume such a mouse.

Previous Table of Contents Next

-->

Previous Table of Contents Next

Configuring the Monitor Section

The Monitor section describes your monitor to X. You can define a number of monitors in the
XF86Config file, as each Monitor section is named. The Screen section (discussed later) then connects a
monitor to a video card. For example, the following abbreviated entry defines our NEC MultiSync XE17
monitor:

 Section "Monitor"

 Identifier "NEC MultiSync XE17"

 VendorName "NEC"

 ModelName "MultiSync 4FGe"

 HorizSync 31.5 - 64.3

 VertRefresh 55-120

 # Modes from the NEC MultiSync 4FGe monitor, a close monitor.

 ModeLine "640x480" 31 640 680 704 832 480 489 492 520

 ModeLine "800x600" 50 800 864 976 1040 600 637 643 666

 ModeLine "1024x768" 81 1024 1068 1204 1324 768 776 782 807

 EndSection

For each monitor, you need to define the items listed in Table 3.13.

Table 3.13Monitor Data

Item Usage

Identifier string Used to identify the monitor later

VendorName string Used for your reference

ModelName string Used for your reference

Bandwidth bandwidth The bandwidth for the monitor, in MHz

HorizSync range Horizontal sync frequencies, in kHz

VertRefresh range Vertical refresh range, in Hz

Gamma value Gamma correction value for your monitor

Modeline values A single resolution mode

The identifier is a string used to refer to the monitor later. You can define more than one monitor in the
XF86Config file.

The HorizSync range describes the horizontal sync frequencies for your monitor. It can be a set of
comma-separated values or a range separated by a dash, such as 42-65, for multisync monitors. You
should get this value from your monitor documentation (where you’ll find most of the key information
needed here).

The format for a Modeline is:

 Modeline "name" horizontal-values vertical values

For example, the following sets up a standard VGA mode:

 # 640x400 @ 70 Hz, 31.5 kHz hsync

 Modeline "640x400" 25.175 640 664 760 800 400 409 411 450

There can be a whole set of modeline values. You can get this from the probeonly mode of X or from
documentation that comes with XFree86. Some of the relevant documentation is listed in Table 3.14.

Table 3.14Video-Mode Documentation with XFree86

File Usage

VideoModes.doc Explains—in excruciating detail—how to calculate modes

modeDB.txt Database of modelines for monitors

Monitors Database of modelines for monitors

All these files are located in /usr/X11R6/lib/X11/doc. An example entry from the Monitors file follows:

 #Date: Sat, 17 Sep 1994 00:50:57 -0400

 #From: Erik Nygren <nygren@mit.edu>

 Section "Monitor"

 Identifier "NEC MultiSync 4FGe"

 VendorName "NEC"

 ModelName "MultiSync 4FGe"

 BandWidth 80Mhz #\

 HorizSync 27-62KHz #> from monitor documentation

 VertRefresh 55-90Hz #/

 ModeLine "640x480" 31 640 680 704 832 480 489 492 520

 ModeLine "800x600" 50 800 864 976 1040 600 637 643 666

 ModeLine "1024x768" 81 1024 1068 1204 1324 768 776 782 807

 EndSection

One of the monitors we have, an NEC MultiSync XE17, was not in either the modeDB.txt or Monitors
file. We found the closest monitor in the listing, an NEC MultiSync 4FGe, and experimented with those
Modelines. Calculating the Modelines yourself is a real pain, so you want to find a monitor or a close
facsimile in the Monitors or modeDB.txt files.

WARNING: Having said that, be careful about using Modelines for other monitors. You can
destroy your monitor if you’re not careful.

Configuring the Graphics Card Section

The Device section describes your graphics card to X. For example, a standard Super VGA device
appears as the following:

 # Standard VGA Device:

 Device

 Identifier "Generic VGA" VendorName "Unknown"

 BoardName "Unknown"

 Chipset "generic"

 # VideoRam 256

 # Clocks 25.2 28.3

 EndSection

A more detailed device section, for an Actix S3 accelerated card, follows:

 # Device configured by xf86config:

 Section "Device"

 Identifier "Actix GE32+ 2MB"

 VendorName "Actix"

 BoardName "GraphicsENGINE Ultra"

 #VideoRam 1024

 #Option "dac_8_bit"

 Ramdac "att20c490"

 Clocks 25 28 40 72 50 77 36 45 90 120 80 32 110 65 75 95

 EndSection

Of these options, the clocks are the hardest to fill in. One option is to try X in probeonly mode to fill in
the details. You can also look in a file called AccelCards in /usr/X11R6/lib/X11/doc for more
information on accelerated chipsets and cards. An entry from the AccelCards file follows:

 Card Vendor : Actix

 Card Model : GraphicsEngine32 Plus

 Card Bus (ISA/EISA/VLB) : ISA

 Chipset : S3 86C801

 Video Memory : 2048k

 Memory Type (DRAM/VRAM) : DRAM

 Memory Speed : 45ns

 Clock Chip : Avasem AV9194-11

 Programmable? (Y/N) : No

 Number of clocks : 16

 Clocks : 25.175 28.322 40.0 0.0 50.0 77.0 36.0 44.9

 Clocks (cont) : 130.0 120.0 80.0 31.5 110.0 65.0 75.0 95.0

 Option Flags :

 RAMDAC : AT&T 20C490-11

 Submitter : David E. Wexelblat <dwex@xfree86.org>

 Last Edit Date : Sept 25, 1993

You can convert the Clocks lines into the proper syntax for the XF86Config file by placing the same
values in order in a line (or lines) starting with Clocks in the Device section:

 Clocks 25.175 28.322 40.0 0.0 50.0 77.0 36.0 44.9

 Clocks 130.0 120.0 80.0 31.5 110.0 65.0 75.0 95.0

Be sure to put all the clock values in the original order.

Previous Table of Contents Next

-->

Previous Table of Contents Next

Combining the Graphics Card with the Monitor to Make a Working X Setup

The Screen section connects a monitor with a graphics card. Your XF86Config file may have multiple
Devices and Monitors defined. It is the Screen section that connects the two.

A complicated Screen section can look something like:

 Section "Screen"

 Driver "accel"

 Device "Actix GE32+ 2MB"

 Monitor "NEC MultiSync XE17"

 Subsection "Display"

 Depth 8

 Modes "1024x768" "800x600" "640x480"

 ViewPort 0 0

 Virtual 1024 768

 EndSubsection

 Subsection "Display"

 Depth 16

 Modes "640x480" "800x600"

 ViewPort 0 0

 Virtual 800 600

 EndSubsection

 Subsection "Display"

 Depth 32

 Modes "640x400"

 ViewPort 0 0

 Virtual 640 400

 EndSubsection

EndSection

Note that the Screen section uses the monitor and device identifiers we entered earlier. This is essential
to connect the screen to the proper monitor and card.

The Driver tells what kind of X server you’re using; the choices are Accel, SVGA, VGA16, VGA2, or
Mono. In almost all cases, you’ll use SVGA for Super VGA cards (and the XF86_SVGA X server) or
Accel for any accelerated chipset and X server, such as the XF86_S3 server we mentioned in the last
chapter.

Each Display subsection covers the modes available at a particular depth. (A depth of eight specifies
eight planes for color, or 256 maximum colors.) The Modes used refer back to the Modelines for the
monitor that we defined earlier.

Virtual Screens

The Virtual line allows you to define a virtual screen that is larger than the number of pixels supported
by your monitor. The X server will automatically scroll the display when the mouse hits the end. If you
like this effect (we don’t), then set the Virtual resolution to something larger than your monitor allows,
such as:

 Virtual 1152 900

This virtual setting creates a traditional Sun Microsystems resolution. This is useful if you need to run
older programs that were designed with Sun systems in mind and want to grab more than the default

1024-by-768 screen area available on most PCs.

The ViewPort line tells where the X server should start up. For example, a ViewPort of 0,0 tells X that
when it starts up, it should display position 0,0 in the upper-left-hand corner (which is what you’d expect
on X). If you’d rather start in the middle (an unlikely option), you can change this.

WARNING: The fvwm window manager supports a different kind of virtual screen. Don’t mix
the two types of virtual screen or you’ll likely have trouble.

Running the Xf86config Program

Now that we’ve gone over the contents of the XF86Config file, we can run the xf86config program, or,
if you’d prefer, fill in the file by hand. We recommend using xf86config and then checking the
XF86Config file it builds by hand. The xf86config program isn’t flawless and needs careful supervision.

When you run xf86config, you should not be in the /usr/X11R6/ lib/X11 directory. Instead, put an
XF86Config file in a directory in your user account and try copying it later to /usr/X11R6/lib/X11.

As the program starts up, it will start asking a lot of questions. The xf86config program will prompt you
for a lot of the values necessary for the XF86Config file, such as type of mouse, your desires for the
keyboard, and monitor frequencies. When you’re done, xf86config will write out the data into a file
named XF86Config in the current directory. (This is why you don’t want to be in /usr/lib/X11, which is
a symbolic link to /usr/X11R6/lib/X11, when you run this program.)

Once the xf86config program finishes, you should carefully examine the XF86Config file it generates.
This file will still be incomplete, because you haven’t probed for the clocks yet. Edit the XF86Config
file. If it looks OK, then, as the root user, copy the file to /usr/X11R6/lib/X11, but be sure to back up
any existing XF86Config file first.

Now you’re ready to try X in probeonly mode.

Previous Table of Contents Next

-->

Previous Table of Contents Next

Probing for Dot Clocks

The XFree86 X server has a special probeonly mode that outputs values from the XF86Config file and
values it detects. You need to run X in this mode to see if things are going to work and to see if it detects
any problems.

Run the command line:

 X -probeonly

when your system has no extra load on it. Stop any unneeded programs before running this, as any extra
system load may influence the timings X obtains.

The following command runs X in probeonly mode and sends the output to the file named /tmp/x.
values:

 X -probeonly > /tmp/x.values 2>&1

Be sure to run X from the console. Don’t try to run X if you’re already running X.

If you have some dot clocks in the XF86Config file, then X -probeonly won’t try to detect new ones.
Because of this, the first time you run X this way, you should comment out the clocks in your
XF86Config file. After you run X in probeonly mode, you can add the clocks to the XF86Config file
and try it again, seeing if things still seem to work.

You can then look at the file /tmp/x.values, which should contain something like the following:

 XFree86 Version 3.1.1 / X Window System

 (protocol Version 11, revision 0, vendor release 6000)

 Operating System: Linux

 Configured drivers:

 S3: accelerated server for S3 graphics adapters (Patchlevel 0)

 mmio_928, s3_generic

 (using VT number 7)

 XF86Config: /usr/X11R6/lib/X11/XF86Config

 (**) stands for supplied, (-) stands for probed/default values

 (**) Mouse: type: Microsoft, device: /dev/ttyS0, baudrate: 1200

 (**) S3: Graphics device ID: "Actix GE32+ 2MB"

 (**) S3: Monitor ID: "NEC MultiSync XE17"

 (**) FontPath set to

 "/usr/X11R6/lib/X11/fonts/misc/,/usr/X11R6/lib/X11/fonts/Type1/,/
usr/X1

 1R6/lib/X11/fonts/Speedo/,/usr/X11R6/lib/X11/fonts/75dpi/,/usr/
X11R6/li

 b/X11/fonts/100dpi/"

 (-) S3: card type: ISA

 (-) S3: chipset: 928, rev E or above

 (-) S3: chipset driver: mmio_928

 (**) S3: videoram: 1024k

 (**) S3: Ramdac type: att20c490

 (-) S3: Ramdac speed: 110

 (-) S3: clocks: 25.24 28.32 39.99 0.00 50.13 77.02 37.35
44.89

 (-) S3: clocks: 90.11 119.98 80.30 31.50 110.16 65.08 75.17
94.68

 (-) S3: Maximum allowed dot-clock: 110.000 MHz

 (**) S3: Mode "1024x768": mode clock = 81.000, clock used = 80.300

 (**) S3: Mode "800x600": mode clock = 50.000, clock used = 50.130

 (**) S3: Mode "640x480": mode clock = 31.000, clock used = 31.500

 (-) S3: Using 6 bits per RGB value

 (**) S3: Virtual resolution set to 1024x768

Note that many of these values come from our XF86Config file.

Now, add the clocks to the Device section of your XF86Config file. Note that each time we ran X -
probeonly, it returned slightly different clock values. For example, in this run, we got the following
clock values (formatted for the XF86Config file):

 Clocks 25.24 28.32 39.99 0.00 50.13 77.02 37.35 44.89

 Clocks 90.11 119.98 80.30 31.50 110.16 65.08 75.17 94.68

From the AccelCards file, we found these clocks—close, but not exact:

 Clocks 25 28 40 72 50 77 36 45

 Clocks 90 120 80 32 110 65 75 95

Testing Your Configuration

Now you’re ready to start X and see if things work. Type in the following command and see if things

start up:

 startx

The startx shell script is the official way to start X from a user account.

Starting X

The startx script runs the xinit program, which does two things: runs the X server (the program named
X) and then runs the commands in the .xinitrc file in your home directory. These commands should set
up the X applications you want launched on startup. If there’s no .xinitrc file in your home directory,
then xinit runs a default script. The system default .xinitrc file is /usr/lib/X11/xinit/xinitrc.fvwm (no
dot).

The best way to start out with X is—once you verify your XF86Config file—to copy the system .xinitrc
into your home directory and then edit this file. Most of the .xinitrc file comes from the standard
XFree86 installation for Linux; it looks for certain files, few of which will actually exist, and it executes
programs using those files it finds. The section at the end is where you’ll set up the X applications you
want started when X starts.

Previous Table of Contents Next

-->

Previous Table of Contents Next

In our case, we use xsetroot to change the screen’s background color and then launch oclock, a rounded
clock, the fvwm window manager, and two xterms. No matter what, you need a window manager
program, to control the display. The default window manager on Linux is called fvwm (see Figure 3.1)
and you’ll find it highly customizable.

X quits when the last program in the .xinitrc (system or local) stops. Often, this last program is preceded
by an exec statement. When you quit this last program, X stops and you’re back at the console. In our
case, we use fvwm as this last—key—process, because you need a window manager running during
your entire X session, making fvwm a natural for this last process.

All our customizations to the .xinitrc file fit into a few simple lines:

 # Start X applications

 xsetroot -solid bisque3

 /usr/bin/X11/oclock -geom 100x100+0+6 &

 /usr/bin/X11/xterm -ls -geom 80x24+3+372 &

 /usr/bin/X11/xterm -ls -geom 80x48+264+13 &

 exec fvwm

The full .xinitrc file will look something like the following:

 #!/bin/sh

 userresources=$HOME/.Xresources

 usermodmap=$HOME/.Xmodmap

 sysresources=/usr/X11R6/lib/X11/xinit/.Xresources

 sysmodmap=/usr/X11R6/lib/X11/xinit/.Xmodmap

 # merge in defaults and keymaps

 if [-f $sysresources]; then

 xrdb -merge $sysresources

 fi

 if [-f $sysmodmap]; then

 xmodmap $sysmodmap

 fi

 if [-f $userresources]; then

 xrdb -merge $userresources

 fi

 if [-f $usermodmap]; then

 xmodmap $usermodmap

 fi

 # start some nice programs

 xsetroot -solid SteelBlue

 # Changed lines are below.

 xterm -geom 80x32+264+0 -ls &

 xterm -geom 80x32+0+250 -ls &

 oclock -geom -7-7 &

 exec fvwm

If you don’t set up a .xinitrc file and there is no system one, the default behavior is to create a single
xterm window in the top-left corner of the screen. This xterm then becomes the key process, even if
you later launch a window manager. When this xterm exits, X exits.

Chances are you can start with the above file and customize it to your needs later.

Stopping X

To stop X in the no .xinitrc file configuration, you need to find the xterm window that started out in the
upper-left corner (you might have moved it) and exit it. You’ll soon be out of X and back to the boring
old terminal mode.

If you use a .xinitrc file, simply exit the window manager to exit X. Normally, you can exit the window
manager from a menu called up by placing the mouse over an empty area of the screen and holding
down the leftmost mouse button. If this doesn’t work, try any and all mouse buttons.

Tuning Your Modes

It’s likely that the default mode in the XF86Config file will specify a 640-by-480 resolution. Chances
are your hardware supports much higher resolutions. While running X, you can press Ctrl-Alt-Keypad-
+ to switch to the next mode in the XF86Config file.

This is very useful, because the way X comes up may not look like a normal screen. If this is the case,
try switching modes to see if things get better.

You can also change the XF86Config file to start up in the best mode. Look for the Screen section in
your XF86Config file. You’ll want to change the modes line from something like:

 Modes "640x480" "800x600" "1024x768"

to

 Modes "1024x768" "800x600" "640x480"

Note that we merely put the best mode first. This makes XFree86 start up in 1024-by-768-pixel-
resolution mode, a much nicer display mode, especially for X. Before doing this, though, make sure that
all graphics modes work by using Ctrl-Alt-Keypad-+ while X is running. Ensure that each change
results in a valid display.

VGA to the Rescue

If all the preceding methods have failed, you may want to fall back on VGA, just to get X up and
running. This is presuming, of course, that you don’t have a plain old Super VGA card, for which the
Super VGA modes would be most appropriate. Instead, the theory is that if you can’t get your super-
duper card to run X in its super-duper accelerated mode, maybe you can get it running in plain old VGA.
Most PC graphics boards support the VGA modes, so this method, while it won’t take advantage of the
power of your graphics card, may at least allow you to run X if you can’t so far.

In the next section, we’ll show how to get a generic VGA file built. This step is usually much quicker
than getting the file properly built for your graphics hardware.

WARNING: Setting up XFree86 incorrectly can harm your system hardware, so watch out.

Using the Default Super VGA

In this section, we discuss using the sample Super VGA XF86Config file that comes with XFree86. You
should always set up the XF86Config file for your exact hardware configuration. We only mention this
technique because setting up X can prove to be nearly impossible. It is always best to set up X for your
hardware. Remember, you were warned.

The first thing to do is find the example XF86Config file that comes with XFree86. This file, usually
named XF86Config.eg and stored in /usr/X11R6/lib/X11, has the default mode for a 640-by-480-pixel
Super VGA device. Most PC graphics boards support this mode, so you might be in luck.

Copy the XF86Config.eg file and edit it. You’ll need to add the data about your mouse and monitor. In

fact, the more you can fill in, the better. When you’re done, you can copy this file to XF86Config and
start up X. If you do use the Super VGA example file, you must use this X server. (Unless you have an
Accel screen section set up, none of the accelerated X servers will work.)

Remember that running X this way may damage your hardware (don’t say we didn’t warn you). The
only reason you want to run in a lower-resolution mode is if all else fails.

Again, it’s best to configure X for your hardware. Only try the Super VGA mode if you have a card for
which all else fails (unless, of course, your graphics card is a Super VGA card and the XF86_SVGA
program is the appropriate X server).

If you’re still having problems with X, you may want to look for extra help on the Internet.

Previous Table of Contents Next

-->

Previous Table of Contents Next

Making the Most of X

By now, you should have X up and running. Even so, with only a window manager and a few shell
windows (xterms), you haven’t seen much at all about what X can do for you and how to configure X
more to your liking.

Setting Up Your X Account

Depending on your preferences, there are different programs you may want to set up in your X
environment. If you’re new to UNIX, you may want to run a file manager program such as xfm, as
shown in Figure 3.5.

Figure 3.5 The X file manager in action.

If you’re more familiar with UNIX, you’ll probably want to run a number of shell windows with the
program called xterm. xterm presents a UNIX shell in a window but allows you to specify the number
of lines, the fonts, and the colors used. You can also copy and paste between xterm windows, a handy
feat with long, complicated UNIX command lines. (See the section on xterm later for more on this
handy application.)

Configuring the Xterm Program

The xterm program is probably the most popular X program. It seems kind of funny to run a shell
window program, which is what xterm is, in a fancy graphical environment. But we’re still running X
on top of Linux and we still need access to the UNIX environment.

Figure 3.6 shows xterm.

javascript:displayWindow('images/03-05.jpg',428,660)
javascript:displayWindow('images/03-05.jpg',428,660)

Figure 3.6 The xterm program.

The neatest things about xterm are that you can:

• Run multiple shell windows (xterms) at once.
• Control the size of each xterm window.
• Control the fonts and colors used by the xterm program.
• Copy and paste between xterm windows and other X programs.
• Use a scrollbar to view program output that has scrolled by.

Even though it’s called xterm, the program isn’t really a terminal emulator; it provides you with a
UNIX shell window.

Controlling the Size of the Xterm Window

The simplest way to control the size of an xterm window is through the -geometry command-line
parameter:

 gilbert:/$ xterm -geometry WidthxHeight &

With this parameter, the Width is the number of characters wide, almost always 80, and the Height is the
number of lines to use. We find that 40 is a good number (the default is 24 lines).

Just about every X program supports the -geometry command-line parameter, but virtually every X
program treats the -geometry command-line parameter differently from xterm (xterm is the main
exception, in other words). While you specify the width and height in terms of characters with xterm,
just about every other X program treats the -geometry as the size in pixels. This is important to note if
you create some really small windows.

For example, the command to start xterm with 80 columns (the default) and 40 lines is:

javascript:displayWindow('images/03-06.jpg',599,677)
javascript:displayWindow('images/03-06.jpg',599,677)

 $ xterm -geometry 80x40 &

With the -geometry command-line parameter you can also specify the starting location in pixels. The full
syntax is:

 -geometry WidthxHeight+X+Y

In this case, X and Y specify the location of the upper-left corner of the program’s window in pixels. In
X, the origin is also in the upper-left corner of the screen, so the following command creates an xterm
window offset 10 pixels (in both X and Y) from the upper-left corner:

 gilbert:/$ xterm -geometry 80x40+10+10 &

You can skip the size (width and height) or the location (x and y). The following are all valid commands:

 gilbert:/$ xterm -geometry 80x40 &

 gilbert:/$ xterm -geometry +10+10 &

 gilbert:/$ xterm &

Setting Up a Scrollbar for Xterm

By default, xterm does not provide for a scrollbar, although one is available. You can use the -sb
command-line parameter:

 gilbert:/$ xterm -sb &

This creates a scrollbar in the xterm window (usually on the left side).

The xterm scrollbar is kind of tricky. Use the middle mouse button to move to the position you want.
The right mouse button (assuming you have a three-button mouse) moves back, while the left mouse
button moves forward. We almost always just use the middle mouse button.

In addition to the -sb command-line parameter, you can request a scrollbar for xterm in an X resource
file.

Previous Table of Contents Next

-->

Previous Table of Contents Next

X Resource Files

Another topic under X that is different from the Windows and Macintosh environments is resource files.
You’ll find that X resource files are either the savior or bane of your existence. Like the Windows and
Macintosh systems, resource files on X allow you to customize fonts, colors, and text messages, all
without access to the application’s source code.

This concept is great. You can tell an application to use a more readable font, you can get rid of garish
colors, you can even write Finnish messages in place of all the English ones, or you can fix up the
English messages to something more to your liking.

X resource files provide a powerful mechanism to customize just about every X application. There are
many locations—both within a resource file and on disk—to which you can place these resources files.
Because many options conflict, it’s easy to get lost in all the details.

Stripped to its basics, an X resource file is an ASCII text file that specifies some option for a program or
programs. Each line of the resource file specifies a resource to set and its value. For example, you can
specify in an X resource file that all xterm programs should start up with the scrollbar turned on, which
we’ll show how to do soon. You can also control fonts, colors, and a lot of the text displayed by most X
programs.

To set up the scrollbar commands for xterm in a resource file, create a file named XTerm (note the
capitalization) in your home directory. Both the file name, XTerm, and the location (your home
directory) are essential. Put in the following lines:

 XTerm*scrollBar: True

 XTerm*saveLines: 1000

These X resource commands tell xterm to use a scrollbar and to save 1000 lines in its scroll buffer. Save
this file and start another xterm program. You should see a scrollbar.

For more on X resource files, see the book list in Appendix A.

Controlling Fonts and Colors

Like most options, you can control xterm’s choice of fonts and colors from both command-line
parameters and X resource files. What we usually do is set up the options we always want in an X
resource file and then use the command-line parameters only for options we rarely need.

Normally, we’re happy with xterm’s color defaults: black text on a white background. It’s the font we’d
like to change. By default, xterm uses the font named fixed, a fixed-character-size font (as opposed to a
proportional font). We find this font far too small, so we’d like to use a larger one.

For setting the font, you can use the -font command-line parameter or set the font resource. To do the
latter, you can add the following line to the XTerm file you created:

 XTerm*font: -*-courier-medium-r-normal--14-140-75-75-m-90-*

This sets up a much more pleasing (to our eyes at least) and larger font for xterm.

To get a list of the available fonts, use the program xlsfonts, which will present you with a huge list. For
xterm, you want a fixed-width font. The Courier fonts typically are fixed-width, as are the Lucida
typewriter fonts. In the very long font names, the fixed-width fonts should have an m or c, as shown
here, after the two 75s:

 -adobe-courier-medium-r-normal--14-140-75-75-m-90-iso8859-1

As usual, to test this, save the XTerm file and start another xterm program.

For our XTerm file, we set the following resources:

 !

 ! XTerm resource file

 !

 XTerm*foreground: black

 XTerm*cursorColor: black

 XTerm*background: white

 XTerm*scrollBar: True

 XTerm*saveLines: 1000

 XTerm*font: -*-courier-medium-r-normal--14-140-75-75-m-90-*

Lines beginning with an exclamation mark (!) are comments. We list the most-used xterm command-
line parameters in Table 3.15.

Table 3.15Commonly Used Xterm Command-Line Parameters

Parameter Meaning

-bg color Sets background color; defaults to white

-cr color Sets color of text cursor; defaults to black

-display hostname:0 Sets name of X display to which to connect

-e program [args] Runs program instead of shell

-fg color Sets foreground color; defaults to black

-fn fontname Uses the given font

-font fontname Uses the given font

-geometry geom Uses given size and location

-ls Turns shell into login shell

-sb Turns on scrollbar

Previous Table of Contents Next

-->

Previous Table of Contents Next

Copying and Pasting between xterm Windows

One of the best benefits of xterm over the console terminal is that you can copy and paste text between
xterm windows. This is very handy if you edit documents. You can view one document in one xterm
window and edit another in a different xterm window, copying and pasting between the two.

Xterm is highly configurable, but in the default configuration, you select text by holding down the left
mouse button and dragging over the text you want to select. Double-clicking over a word selects just
that word. Triple-clicking anywhere in a line selects the entire line.

To paste, press the middle mouse button. The text will be inserted, just as if you typed it.

Xterm just presents a shell window. Inside the xterm window, you run text-based shell programs, few
of which know anything about the mouse and selecting text. Therefore, you have to ensure that the
program you run within the xterm window is ready for the pasted text. In the elvis text editor, for
example, you should enter input mode by typing i in command mode.

NOTE: Elvis does not support middle-mouse button pastes, which is very annoying. To paste in
elvis, you must hold down the Shift key while you press the middle mouse button.

Our fix is to use a different vi clone that comes with Linux, called vim. Vim fully supports mouse
pasting in xterm windows without the hassle of elvis.

Other Shell Window Programs

In addition to the ubiquitous xterm, Linux ships with a few other shell programs, including
color_xterm, rxvt, and shelltool.

If you want a shell with color, use color_xterm. This program acts just like xterm, but it presents a lot
more color. For example, when you make a directory listing with ls, color_xterm presents directories in
one color and ordinary files in another.

The rxvt program is very similar to xterm. Many claim that rxvt uses a smaller memory footprint than
xterm, but we find its quirks aren’t worth the difference (particularly with Linux shared libraries, which

reduce xterm’s memory footprint to a reasonable level).

If you use Open Look applications on a Sun system at work, you will find yourself right at home with
shelltool, found in /usr/openwin/bin.

You must have loaded the Open Look applications when you installed Linux to have this program. We
recommend you install these programs, which also include the olwm and olvwm window managers.

All in all, we tend to only use xterm instead of other shell window programs, because xterm remains
constant on all the UNIX systems we use, at home and at work.

Starting X Automatically at Boot-Up and Creating an X Login Screen

Up to now, we’ve been running startx to begin an X session. You still need to login at the console and
start X yourself (or use the automatic method we describe later). In addition to this method, there’s a
way to set up an X login screen, using XDM. XDM stands for the X Display Manager; it is a means to
control an X session. As such, XDM is generally much nicer to the user, as it automatically starts the X
server and presents a graphical login window, like the one shown in Figure 3.7.

Figure 3.7 A graphical login window.

The X Display Manager is run from a program called xdm. While xdm takes a little getting used to, we
like it better than the startx/xinit that we’ve been running so far. This is because startx (which runs
xinit) requires you to login to a text screen and then start up X (via startx). Xdm allows you to log
directly into an X session.

Xdm also allows one program to control your workstation’s console and a number of X terminals. If
you’re interested in this, look in Appendix A for books that cover xdm.

To set up xdm, you need to edit at least one system file, a key file used when booting Linux; this is a
serious endeavor. Always back up any system file before you edit it.

Previous Table of Contents Next

javascript:displayWindow('images/03-07.jpg',483,268)
javascript:displayWindow('images/03-07.jpg',483,268)

-->

Previous Table of Contents Next

UNIX Run-Levels

Xdm is usually set to trigger what is called a run-level. With a few exceptions, run-levels in UNIX is an
arbitrary concept that mostly follows ancient UNIX traditions. The run-level S implies a single-user
stand-alone system.

In Linux, run-level 1 and higher are multiuser. This means that more than one user is allowed to login.
On many systems, run-level 3 starts networking. This is also the default Linux run-level. Linux has
special run-levels for power-fail (which shuts the system down) and the Vulcan death-grip (Ctrl-Alt-
Backspace).

You can get some ideas about run-levels by looking in the /etc/inittab file. In /etc/inittab, one of the
first entries will be something like the following:

 # Default runlevel.

 id:3:initdefault:

NOTE: In Slackware 2.3 (and the first edition of this book), the Linux default run-level was 5.
The default X run-level was 6. It has changed to 3 and 4, respectively. Now, run-level 6 will
reboot the system, a great surprise if you want it to run X.

This states that the default system run-level is 3. When Linux boots up, it will boot into run-level 3.
Later in the /etc/inittab file, you’ll find something like:

 x1:4:wait:/etc/rc.d/rc.4

This states that on entry to run-level 4, /etc/rc.d/rc.4 should be run. This file, then, starts up the X
Display Manager, which presents an X login screen.

On our system, /etc/rc.d/rc.4 starts the following program:

 # Tell the viewers what's going to happen...

 echo "Starting up the X Window System V.11 R.6..."

 # Call the "xdm" program.

 exec /usr/X11R6/bin/xdm -nodaemon

This is what starts up xdm. To get xdm up and running, all you should really have to do is edit the /etc/
inittab as root and change the following line:

 id:3:initdefault:

to

 id:4:initdefault:

That’s it. Everything else comes preconfigured. You may want to change the configuration, but you
have a good start.

After making these changes, when you next boot Linux, you’ll boot into run-level 4 rather than run-level
3. The process of going into run-level 4 will start xdm, because of what’s in the /etc/rc.d/rc.4 file.

Before doing this, though, make a copy of /etc/inittab. You also should test xdm before setting the
system to boot into it, because you always want to be able to boot Linux. (Making a mistake in /etc/
inittab can result in a Linux that won’t boot.) To test xdm, you can type in the following command as
root, to change to run-level 4 now:

 # init 4

This will jump you to run-level 4. Be patient; this command takes a while.

Be sure that X is not running when you do this. You should be logged in as root at the console.

If you set up your .login or .profile file to automatically call startx when you login (see “Starting X
Automatically on Login” later), you must disable this first. These two methods for starting X conflict.
Quit X and then comment out those lines you added to the .login or .profile file, for example:

 if (`tty` == '/dev/tty1') then

 # Commented out.

 # startx

 endif

After a while, you should see a graphical login screen. It is best to test xdm using init 4 first, to see if
everything is set up correctly. Try to login and see what happens. If it works, you’re in business and you
can confidently modify the /etc/inittab file.

The xdm configuration files are in /usr/lib/X11/xdm. If you want to change the background color for
the login screen, look in Xsetup_0 in that directory. You probably won’t have to edit much in /usr/lib/
X11/xdm, especially for a stand-alone Linux system without X terminals on the network. (If your needs
are more demanding, you’ll need to look into a book on X, such as The UNIX System Administrator’s
Guide to X; see Appendix A for more on this.)

User Accounts Under Xdm

While you probably won’t have to edit any of the xdm system files in /usr/lib/X11/xdm, it’s likely
you’ll have to edit files in your home directory. By default, xdm runs a file named .xsession from your
home directory, instead of the .xinitrc that is run by startx (and xinit).

To create the .xsession file, you can start by copying your .xinitrc file to .xsession in your home
directory. (Remember to put in the leading period on the filename in your home directory.) Then modify
this file like you changed the .xinitrc file.

Here’s a copy of our .xsession file:

 #!/bin/sh

 userresources=$HOME/.Xresources

 usermodmap=$HOME/.Xmodmap

 sysresources=/usr/X11R6/lib/X11/xinit/.Xresources

 sysmodmap=/usr/X11R6/lib/X11/xinit/.Xmodmap

 # merge in defaults and keymaps

 if [-f $sysresources]; then

 xrdb -merge $sysresources

 fi

 if [-f $sysmodmap]; then

 xmodmap $sysmodmap

 fi

 if [-f $userresources]; then

 xrdb -merge $userresources

 fi

 if [-f $usermodmap]; then

 xmodmap $usermodmap

 fi

 # start some nice programs

 xsetroot -solid SteelBlue

 xterm -geom 80x32+264+0 -ls &

 xterm -geom 80x32+0+250 -ls &

 oclock -geom -7-7 &

 exec fvwm

If you don’t want to start up X at boot time, you may want to start X every time you login.

Previous Table of Contents Next

-->

Previous Table of Contents Next

Starting X Automatically on Login

If you don’t set up xdm, you’ll need to type in startx after you login to get X and all these applications
in your .xinitrc file started. If you don’t like to enter startx every time you login, and you’re sure that
you want to run X every time you login, you can put the startx command in your .login or .profile file
(depending on the shell you use, csh or ksh). If you do, be sure that you’re running from the console
only. Otherwise, the .login or .profile file will error out if they get run from elsewhere (such as when
you login over a serial line or from another virtual terminal).

The way to check for this is to check the result of the tty program. The tty program returns the current
device file used for your terminal. When run from an xterm shell window, tty will print out something
like /dev/ttyp1 (for the first pseudo-terminal device). But, when run from the console (from the first
virtual terminal), tty will print out /dev/tty1. When run from the second virtual terminal, tty prints out /
dev/tty2 so we can check for /dev/tty1.

To do this, we can enter tty at the console (before starting X):

 $ tty

 /dev/tty1

NOTE: Use the value tty returns for you, not necessarily the value we received.

Armed with this information, you can edit your .login file (presuming you use the C shell, csh, as your
shell) to add the following lines:

 if (`tty` == '/dev/tty1') then

 startx

 endif

This will start up X when you login at the console. You can also set up your account to log you out when
you quit X. Most of the time, we begin X at login and quit X when we want to logout. If this fits your
pattern, you can change the .login file to contain the following:

 if (`tty` == '/dev/tty1') then

 startx

 logout

 endif

The X Font Server

The X font server is a special program that can scale fonts. This ability dramatically increases the
already-prolific set of X fonts available on your system (use the xlsfonts command to list these fonts).
To get the font server up and running, you must:

• Configure the font server and tell it where to get fonts.
• Configure the font server to start up before X does.
• Configure the X server to communicate with the font server.

To configure the font server, we need to tell it where to find the scalable fonts. Luckily, Linux comes
with a workable preconfigured file, /usr/X11R6/ lib/X11/fs/config.

To start the font server, use the xfs (short for X font server) command. Enter the following command as
root:

 # xfs -port 7000 &

This uses the default configuration file, /usr/X11R6/lib/X11/fs/config, and runs on TCP/IP port 7000
(an arbitrary port to which the X font server defaults).

Once started, we can verify that the font server is running by using the fsinfo command:

 gilbert:/$ fsinfo -server hostname:port

You need to fill in the hostname and port number. For example, with a hostname of eric and the default
port number of 7000, the command would be:

 gilbert:/$ fsinfo -server eric:7000

You should see output like the following:

 name of server: eric:7000

 version number: 2

 vendor string: X Consortium

 vendor release number: 6000

 maximum request size: 16384 longwords (65536 bytes)

 number of catalogues: 1

 all

 Number of alternate servers: 0

 number of extensions: 0

Once you verify that the font server is running, you can set up XFree86 to communicate with the font
server. This is necessary so that X applications can take advantage of the font server’s fonts.

To get the X server ready to accept the font server, you need to adjust its font path, or fp. Enter the
following commands:

 gilbert:/$ xset +fp tcp/eric:7000

 gilbert:/$ xset fp rehash

In your case, you need to replace eric with your system’s hostname. The first command tells the X
server to use a TCP/IP port as a sort of font directory; the tcp/hostname:port syntax is the standard way
to do this. The second command tells the X server to query again for all the available fonts.

If you’re running xdm (see “Starting X at Boot-Up” earlier), you should stop that, verify that things
work manually, and then set up xdm again. Problems with the font server may cause X to quit. If X
quits, this may prevent an X-based login, leaving you in an unhappy situation.

Previous Table of Contents Next

-->

Previous Table of Contents Next

Setting a Screen Background Image

In X, you can display a bitmap image, a solid color, or a graphics file as your screen background,
depending on the program you use to accomplish this task.

The xsetroot program sets the screen background color. It can also set the screen background to a
monochrome bitmap. Our .xinitrc file sets the background color to SteelBlue. Other good screen
background colors include bisque3 and MediumTurquoise. You can see the whole list of X color names
in the text file /usr/lib/X11/rgb.txt. This file contains a number of entries, including:

 255 239 213 PapayaWhip

 255 235 205 BlanchedAlmond

 50 205 50 LimeGreen

The xsetroot program can also be used to set the screen background to a monochrome bitmap, stored in
an X bitmap file. The syntax for setting the screen background to a bitmap is:

 gilbert:/$ xsetroot -bitmap filename -fg fore -bg back

where filename is the name of the file containing the bitmap and the fore and back are optional
parameters that set the image’s foreground and background color, respectively. Use the color names
from the rgb.txt file explained earlier.

For example, if you have an X bitmap file named prisoner.xb, you can set it to be tiled over the screen
background with the following command:

 gilbert:/$ xsetroot -bitmap prisoner.xb

You’ll see a screen like that shown in Figure 3.8.

Figure 3.8 Using a bitmap as the screen background.

Because the image looks good in black and white, we skip the -fg and -bg options to xsetroot (and leave
the famous penny-farthing bicycle alone).

If, instead of an X bitmap file, you have a GIF, TIFF, or JPEG image, you can use xv to display the
image. Xv is a very neat image and file manager that sports the ability to convert images from one
format to another and a way cool Visual Schnauzer. Normally, you display images in xv’s window, but
it can also display images on the screen background, also called the root window.

For xv, use the following syntax to display an image on the root window:

 gilbert:/$ xv -quit -root -max filename

where filename is the name of the file you want to display. When you run this command on an image
file, you’ll see a result like the one in Figure 3.9.

Figure 3.9 Using xv to set an image file for the screen background.

With complicated color images, you can soon fill up your colormap from the screen background image.
This may lead to color flashing as X programs run out of colors in the default colormap and therefore
create their own colormaps.

The Fvwm Window Manager

The window manager is one of the most important applications you’ll run, as it sits around every
application window on the screen and can influence how the windows work. The de facto window
manager for Linux is fvwm.

This window manager provides a great deal of control over the way you interact with X, especially
because fvwm supports a host of configuration options. While you can run any window manager you

javascript:displayWindow('images/03-08.jpg',879,608)
javascript:displayWindow('images/03-08.jpg',879,608)
javascript:displayWindow('images/03-09.jpg',996,531)
javascript:displayWindow('images/03-09.jpg',996,531)

want, fvwm seems to be the most popular in the Linux world. It’s not documented in many places or X
books, so we’ll show you how to set up fvwm for your Linux system.

You can run only one window manager at a time.

Configuring Fvwm

Most window managers under X support a configuration file. Usually, this file is located in a dot file in
your home directory. Most window managers also follow a naming convention for their configuration
file. For the mwm window manager, the file is named .mwmrc. For twm, it’s .twmrc. For fvwm, it’s .
fvwmrc.

At startup, fvwm will look for your customizations in a file named .fvwmrc in your home directory. If
you have no .fvwmrc file (which is likely when you start out), fvwm will look for a system file named /
usr/lib/X11/fvwm/system.fvwmrc. If that file, too, is missing, fvwm will exit.

Because fvwm is a very complex window manager, you should copy the system.fvwmrc file or one of
the example files to your home directory and name it .fvwmrc. By starting from a working example,
you’ll find it a lot easier than creating a .fvwmrc file from scratch.

Once you find the fvwm system directory, you’ll see a number of sample configurations in the
sample_configs directory. It’s easiest to configure fvwm from a working model, so you can either copy
system.fvwmrc or one of the files in the sample_configs directory.

Once you have copied a working configuration file into your home directory, the next step is to start
customizing. The .fvwmrc file is very long, so we’ll provide an overview of the areas you’re most likely
to customize and then provide an example .fvwmrc file—a very long example—that you can use. Just
browsing this example should give you plenty of ideas. In addition to our example, you may want to
look at the fvwm example files mentioned earlier and look at fvwm’s online-manual page.

In the .fvwmrc file, the order of items is very important. It’s best to start with a working example and
then search for the items we mention. Change the item’s value, but leave the item itself in the same
relative position in the .fvwmrc file.

Previous Table of Contents Next

-->

Previous Table of Contents Next

Configuring Fonts and Colors

The foremost area you’ll likely customize in the .fvwmrc file is fonts and colors.

Each window manager, including fvwm, allows only one application at a time to get keyboard input.
This window, usually called the active window or the keyboard focus window, is usually highlighted by
the window manager. In the .fvwmrc file, the HiForeColor sets the text foreground color for the active
window’s title. The HiBackColor sets the active titlebar color. The StdForeColor and StdBackColor
work similarly for nonactive windows.

We use the following colors (copied from the default .fvwmrc file):

 StdForeColor Black

 StdBackColor #60a0c0

 # this is used for the selected window

 HiForeColor Black

 HiBackColor #c06077

Window managers usually support two policies for selecting which window is made active: click-to-
focus and focus-follows-mouse. Few people agree on which is better (Microsoft has decided click-to-
focus is better, though). Choose the mode you want.

If you want focus-follows-mouse, ensure that the following line is commented out:

 #ClickToFocus

If you want click-to-focus, then uncomment (remove the # character) the same line:

 ClickToFocus

For fonts, you can control a number of the fonts used by fvwm:

 Font -adobe-helvetica-medium-r-*-*-14-*-*-*-*-*-*-*

 #Font -*-times-medium-i-*-*-*-140-*-*-*-*-*-*

 WindowFont -adobe-helvetica-bold-r-*-*-12-*-*-*-*-*-*-*

 #IconFont -adobe-helvetica-medium-r-*-*-11-*-*-*-*-*-*-*

 IconFont fixed

The asterisks (*) in the font names are wildcards. We only specify the minimum amount of data
necessary to get Helvetica fonts at 10 and 12 point. A few fonts are commented out. You can
uncomment these lines (and comment out the corresponding line) to try these other fonts, or type in your
own font names.

By default, fvwm asks you to place each new window that appears on the screen. This can be a real pain,
so we usually ask fvwm to place windows for us—you can always move them later—by setting the
oddly named RandomPlacement option. Uncomment the following line to get this effect:

 RandomPlacement

You also need to comment out the following line:

 #NoPPosition

By default, fvwm places no border around dialog windows (called transient windows in X terminology).
To make fvwm act more like the Motif window manager, uncomment the following line:

 # If you want decorated transient windows,

 # uncomment this:

 # Ensure that a titlebar appears on dialogs.

 DecorateTransients

Testing Your Fvwm Configuration

Now that we’ve made a change to our .fvwmrc file, it’s time to test our new configuration. To do this,
you need to restart fvwm. You can either quit X and restart everything or call up Fvwm’s root window
menu, where you’ll find a Restart fvwm choice. (It may be on a submenu.) You can access fvwm’s root
menu by holding down the left mouse button over the screen background.

Turning off the Virtual Desktop

Both XFree86 and fvwm provide the ability to use virtual screen space, screen space beyond the
confines of your monitor’s resolution. XFree86 calls this a virtual screen, and fvwm calls this a virtual
desktop.

These two methods tend to conflict, and frankly, we don’t have much use for either kind of virtual
screen space, as we don’t run that many X applications at once and we can iconify windows to get them
out of the way. Furthermore, it’s easy to accidentally warp to one of fvwm’s virtual desktop spaces,
which tends to get annoying.

Because of all this, we turn off fvwm’s virtual desktop in our .fvwmrc file with the following:

 DeskTopSize 1x1

You specify the desktop value in units of the screen size; 1×1 means no virtual desktop.

Placing Icons

Fvwm’s defaults result in bizarrely placed icons, with hidden icons strewn throughout the screen. We
want to change this. To do so, use the IconBox command in the .fvwmrc file. We like our icons to go
across the top of the screen, but we start from an offset of about 130 pixels to leave room for the round
oclock window we place in the upper-left corner of the screen. (See our .xinitrc file, listed earlier.)

The IconBox specifies a rectangular area where you want the icons to appear. Here’s our area:

 IconBox 130 5 600 15

Configuring the Good Stuff

Fvwm also supports something called modules, add-ons that you can configure and run. The most
popular add-on is called GoodStuff; it places a window on your screen from which you can launch
applications or menus, sort of like a toolbar or the Windows 95 command area at the bottom of the
screen.

Then you can turn on GoodStuff by uncommenting the GoodStuff lines in the InitFunction and
RestartFunctions sections:

 Function "InitFunction"

 #Module "I" FvwmBanner

 #Exec "I" xpmroot /usr/include/X11/pixmaps/fvwm.xpm &

 Module "I" GoodStuff

 #Module "I" FvwmPager 0 3

 #Exec "I" exec xterm -geometry 80x64+0+0 &

 #Wait "I" xterm

 #Desk "I" 0 2

 #Exec "I" exec xmh -font fixed -geometry 507x750+0+0 &

 #Wait "I" xmh

 #Desk "I" 0 0

 EndFunction

 Function "RestartFunction"

 #Exec "I" xsetroot -solid "#266294"

 Module "I" GoodStuff

 #Module "I" FvwmPager 0 3

 EndFunction

Either way works. The InitFunction section allows you to specify a set of X applications to launch at
fvwm startup. Because this overlaps with the .xinitrc file, we typically skip starting any applications in
the InitFunction section.

Toward a Motif-Like Look and Feel

One of fvwm’s claims to fame is that it is a free window manager that looks a lot like the Motif window
manager, mwm, used on just about every commercial version of UNIX. Unfortunately, while fvwm
looks like Motif, it doesn’t act as much like mwm as you’d expect. The similar look of fvwm can fool
you.

Take heart, though, as there are a few things you can do to make fvwm act more like mwm. Take a look
at our .fvwmrc file, later, and you’ll see a lot of mwm-like behavior.

Previous Table of Contents Next

-->

Previous Table of Contents Next

Putting It All Together

To put all this together, the following is our .fvwmrc file. You can use this as a base for your
modifications. We don’t expect you to type this in. Instead, we provide it as a source of ideas and
information for configuring fvwm to your liking. The only lines we changed—and there are only a
few—are marked in italic type.

 ######################################

 # set up the colors

 #

 # OK some people like bright clear colors on

 # their window decorations.

 # These people, I guess would mostly be from nice

 # sunny/good weather places

 # line California.

 #

 # StdForeColor Black

 # StdBackColor LightSkyBlue

 # HiForeColor yellow

 # HiBackColor PeachPuff1

 # PagerBackColor BlanchedAlmond

 # Me, I'm from Upstate New York and live

 # in New Hampshire, so I prefer

 # these dark muddy colors...

 # this is used for nonselected windows,

 # menus, and the panner

 StdForeColor Black

 StdBackColor #60a0c0

 # this is used for the selected window

 HiForeColor Black

 HiBackColor #c06077

 PagerBackColor #5c54c0

 PagerForeColor orchid

 StickyForeColor Black

 StickyBackColor #60c0a0

 # Menu colors

 MenuForeColor Black

 MenuBackColor grey

 MenuStippleColor SlateGrey

 #####################################

 # Now the fonts - one for menus, another

 # for window titles, another for icons

 Font -adobe-helvetica-medium-r-*-*-14-*-*-*-*-*-*-*

 #Font -*-times-medium-i-*-*-*-140-*-*-*-*-*-*

 WindowFont -adobe-helvetica-bold-r-*-*-12-*-*-*-*-*-*-*

 #IconFont -adobe-helvetica-medium-r-*-*-11-*-*-*-*-*-*-*

 IconFont fixed

 #####################################

 # Set up the major operating modes

 #

 ####### FOCUS STUFF ########

 # Set windows to autoraise after 750

 # milliseconds if you like it.

 # Autoraise can sometimes obscure pop-up

 # windows. Performance is now

 # similar to olvwm's auto-raise feature.

 #AutoRaise 750

 # Normally, we'll be in focus-followsmouse

 # mode, but uncomment this

 # for mwm-style click-to-focus

 #ClickToFocus

 ####### ICON STUFF #########

 # Auto Place Icons is a nice feature....

 # This creates two icon boxes, one on the

 # left side, then one on the

 # bottom. Leaves room in the upper left

 # for my clock and xbiff,

 # room on the bottom for the Pager.

 #IconBox -150 90 -5 -140

 #IconBox 5 -140 -140 -5

 #IconBox -70 1 -1 -140

 IconBox 130 5 600 15

 # If you uncomment this, and make sure

 # that the WindowList is bound to

 # something, it works pretty much

 # like an icon manager.

 #SuppressIcons

 # StubbornIcons makes icons de-iconify into

 # their original position on the

 # desktop, instead of on the current page.

 #StubbornIcons

 # With AutoPlacement, icons will normally

 # place themselves underneath active

 # windows. This option changes that.

 StubbornIconPlacement

 # If you want ALL you icons to follow you around

 # the desktop (Sticky), try this

 #StickyIcons

 ###### MWM EMULATION #######

 #

 # My feeling is that everyone should use

 # MWMDecorHints and MWMFunctionHints,

 # since some applications depend on having

 # the window manager respect them.

 # MWMFunction hints parses the function

 # information in the MOTIF_WM_HINTS

 # property, and prohibits use of these

 # functions on the window. Appropriate

 # portions of the window decorations are removed.

 MWMFunctionHints

 # MWM is kinda picky about what can be done

 # to transients, and it was keeping

 # me from iconifying some windows that I

 # like to iconify, so here's an

 # over-ride that will allow me to do the

 # operation, even tough the menu

 # item is shaded out.

 MWMHintOverride

 # MWMDecor hints parses the decoration

 # information in the MOTIF_WM_HINTS

 # property, and removes these decoratons

 # from the window. This does not affect

 # the functions that can be performed via the menus.

 MWMDecorHints

 # These are affect minor aspects for the

 # look-and-feel.

 # Sub-menus placement mwm-style?

 MWMMenus

 # mwm-style border reliefs (less deep

 # than default fvwm) ?

 # MWMBorders

 # Maximize button does mwm-inversion thingy

 # MWMButtons

 ### MISCELLANEOUS STUFF ####

 # If you don't like the default 150 msec click delay

 # for the complex functions

 # change this and uncomment it.

 #ClickTime 150

 # OpaqueMove has a number (N) attached

 # to it (default 5).

 # if the window occupies less than

 # N% of the screen,

 # then opaque move is used. 0 <= N <= 100

 OpaqueMove 100

 # flip by whole pages on the edge of the screen.

 #EdgeScroll 100 100

 # A modest delay before flipping pages seems

 # to be nice...

 # I thresh in a 50 pixel Move-resistance too,

 # just so people

 # can try it out.

 #EdgeResistance 250 50

 # I like to use a large virtual screen and move

 # from page to page with the

 # pager.

 #EdgeResistance 10000 0

 #### WINDOW PLACEMENT ######

 # RandomPlacement prevents user interaction

 # while placing windows:

 # Make windows appear without requiring user

 # interaction to place them.

 RandomPlacement

 # SmartPlacement makes new windows pop-up

 # in blank regions of screen

 # if possible, or falls back to random

 # or interactive placement.

 #SmartPlacement

 # With SmartPlacement, windows will normally

 # place themselves over icons.

 # Uncomment this to change that.

 #StubbornPlacement

 # NoPPosition instructs fvwm to ignore

 # the PPosition field in window

 # geometry hints. Emacs annoyingly sets

 # PPosition to (0,0)!

 #NoPPosition

 ######### DECORATIONS ######

 # If you want decorated transient windows,

 # uncomment this:

 # Ensure that a title-bar appears on dialogs.

 DecorateTransients

 #####################################

 # Set up the virtual desktop and pager

 # Set the desk top size in units of

 # physical screen size.

 # No virtual desktop.

 DeskTopSize 1x1

 # and the reduction scale used

 # for the panner/pager

 # No virtual desktop.

 #DeskTopScale 36

 # Use the Fvwm Pager

 # No virtual desktop.

 #Pager 5 5

 #####################################

 # Module path and paths to the icons

 #

 # ModulePath is a colon-separated list, just

 # like regular unix PATH

 ModulePath /usr/lib/X11/fvwm

 PixmapPath /usr/include/X11/pixmaps/

 IconPath /usr/include/X11/bitmaps/

 #####################################

 # Set the decoration styles and window options

 # Order is important!!!!

 # If compatible styles are set for a

 # single window in multiple Style

 # commands, then the styles are ORed

 # together. If conflicting styles

 # are set, the last one specified is used.

 # These commands should command before any

 # menus or functions are defined,

 # and before the internal pager is started.

 # change the default width.

 Style "*" BorderWidth 5, HandleWidth 5, Color Black/#60a0c0,Icon

 unknown1.xpm

 Style "Fvwm*" NoTitle, Sticky, WindowListSkip

 Style "Fvwm Pager" StaysOnTop

 Style "FvwmBanner" StaysOnTop

 Style "GoodStuff" NoTitle, NoHandles, Sticky,

 WindowListSkip,BorderWidth 0

 Style "*lock" NoTitle, NoHandles, Sticky, WindowListSkip

 Style "xbiff" NoTitle, Sticky, WindowListSkip

 Style "Maker" StartsOnDesk 1

 Style "matlab" StartsOnDesk 3

 Style "signal" StartsOnDesk 3

 Style "rxvt" Icon term.xpm

 Style "xterm" Icon xterm.xpm, Color black/grey

 Style "Appointment" Icon datebook.xpm

 Style "xcalc" Icon xcalc.xpm

 Style "xbiff" Icon mail1.xpm

 Style "xmh" Icon mail1.xpm, StartsOnDesk 2

 Style "xman" Icon xman.xpm

 Style "xvgr" Icon graphs.xpm

 Style "matlab" Icon math4.xpm

 Style "xmag" Icon mag_glass.xpm

 Style "xgraph" Icon graphs.xpm

 Style "GoodStuff" Icon toolbox.xpm

 #####################################

 # Stuff to do at start-up

 Function "InitFunction"

 #Module "I" FvwmBanner

 #Exec "I" xpmroot /usr/include/X11/pixmaps/fvwm.xpm &

 #Module "I" GoodStuff

 #Module "I" FvwmPager 0 3

 #Exec "I" exec xterm -geometry 80x64+0+0 &

 #Wait "I" xterm

 #Desk "I" 0 2

 #Exec "I" exec xmh -font fixed -geometry 507x750+0+0 &

 #Wait "I" xmh

 #Desk "I" 0 0

 EndFunction

 Function "RestartFunction"

 #Exec "I" xsetroot -solid "#266294"

 #Module "I" GoodStuff

 #Module "I" FvwmPager 0 3

 EndFunction

 # Now define some handy complex functions.

 # This one moves and then raises the

 # window if you drag the mouse,

 # only raises the window if you click,

 # or does a RaiseLower if you double

 # click

 Function "Move-or-Raise"

 Move "Motion"

 Raise "Motion"

 Raise "Click"

 RaiseLower "DoubleClick"

 EndFunction

 # This one maximizes vertically if you click

 # (leaving room for the GoodStuff bar at the

 # bottom) or does a full maximization

 # if you double-click, or a true full vertical

 # maximization if you just hold the mouse button down.

 Function "maximize_func"

 Maximize "Motion" 0 100

 Maximize "Click" 0 80

 Maximize "DoubleClick" 100 100

 EndFunction

 # This one moves and then lowers the window

 # if you drag the mouse, only lowers the window

 # if you click, or does a RaiseLower if you double

 # click

 Function "Move-or-Lower"

 Move "Motion"

 Lower "Motion"

 Lower "Click"

 RaiseLower "DoubleClick"

 EndFunction

 # This one moves or (de)iconifies:

 Function "Move-or-Iconify"

 Move "Motion"

 Iconify "DoubleClick"

 EndFunction

 # This one resizes and then raises the window

 # if you drag the mouse,

 # only raises the window if you click,

 # or does a RaiseLower if you double

 # click

 Function "Resize-or-Raise"

 Resize "Motion"

 Raise "Motion"

 Raise "Click"

 RaiseLower "DoubleClick"

 EndFunction

 # This is provided as a hint only.

 # Move to a known page on the desktop,

 # then start an application in a

 # known location. Could also switch to a

 # known desktop, I guess

 #Function "abs_coord"

 #GoToPage "Immediate" 1,1

 #Exec "Immediate" exec xcalc -geometry +100+100&

 #EndFunction

 #####################################

 #now define the menus - defer bindings until later

 Popup "Shells"

 Title "Shells"

 Exec "Xterm (7x14 font)" exec /usr/bin/X11/xterm -sb -sl
500 -

 j -ls -fn 7x14 &

 Exec "Color Rxvt (VT100 emulator)" exec /usr/bin/X11/rxvt -font

 7x14 -ls &

 Exec "Color Xterm (7x14 font)" exec /usr/bin/X11/
color_xterm

 -sb -sl 500 -j -ls -fn 7x14 &

 Exec "Large Xterm (10x20 font)" exec /usr/bin/X11/xterm -
sb -

 sl 500 -j -ls -fn 10x20 &

 Exec "Large Rxvt (10x20 font)" exec /usr/bin/X11/rxvt -
font

 10x20 -ls &

 Exec "Large Color Xterm (10x20 font)" exec

 /usr/bin/X11/color_xterm -sb -sl 500 -j -ls -fn 10x20 &

 EndPopup

 Popup "Screensaver"

 Title "Screensaver"

 Exec "Bat" exec xlock -nolock -nice 0 -mode bat &

 Exec "Blank" exec xlock -nolock -nice 0 -mode blank &

 Exec "Blot" exec xlock -nolock -nice 0 -mode blot &

 Exec "Bob" exec xlock -nolock -nice 0 -mode bob &

 Exec "Bounce" exec xlock -nolock -nice 0 -mode bounce &

 Exec "Flame" exec xlock -nolock -nice 0 -mode flame &

 Exec "Galaxy" exec xlock -nolock -nice 0 -mode galaxy &

 Exec "Grav" exec xlock -nolock -nice 0 -mode grav &

 Exec "Helix" exec xlock -nolock -nice 0 -mode helix &

 Exec "Hop" exec xlock -nolock -nice 0 -mode hop &

 Exec "Hyper" exec xlock -nolock -nice 0 -mode hyper &

 Exec "Kaleid" exec xlock -nolock -nice 0 -mode kaleid &

 Exec "Life" exec xlock -nolock -nice 0 -mode life &

 Exec "Life3d" exec xlock -nolock -nice 0 -mode life3d &

 Exec "Maze" exec xlock -nolock -nice 0 -mode maze &

 Exec "Pyro" exec xlock -nolock -nice 0 -mode pyro &

 Exec "Qix" exec xlock -nolock -nice 0 -mode qix &

 Exec "Random" exec xlock -nolock -nice 0 -mode random &

 Exec "Rect" exec xlock -nolock -nice 0 -mode rect &

 Exec "Rock" exec xlock -nolock -nice 0 -mode rock &

 Exec "Rotor" exec xlock -nolock -nice 0 -mode rotor &

 Exec "Sphere" exec xlock -nolock -nice 0 -mode sphere &

 Exec "Spline" exec xlock -nolock -nice 0 -mode spline &

 Exec "Swarm" exec xlock -nolock -nice 0 -mode swarm &

 Exec "Wator" exec xlock -nolock -nice 0 -mode wator &

 Exec "Worm" exec xlock -nolock -nice 0 -mode worm &

 Exec "World" exec xlock -nolock -nice 0 -mode world &

 EndPopup

 Popup "Screenlock"

 Title "Lock Screen"

 Exec "Bat" exec xlock -nice 0 -mode bat &

 Exec "Blank" exec xlock -nice 0 -mode blank &

 Exec "Blot" exec xlock -nice 0 -mode blot &

 Exec "Bob" exec xlock -nice 0 -mode bob &

 Exec "Bounce" exec xlock -nice 0 -mode bounce &

 Exec "Flame" exec xlock -nice 0 -mode flame &

 Exec "Galaxy" exec xlock -nice 0 -mode galaxy &

 Exec "Grav" exec xlock -nice 0 -mode grav &

 Exec "Helix" exec xlock -nice 0 -mode helix &

 Exec "Hop" exec xlock -nice 0 -mode hop &

 Exec "Hyper" exec xlock -nice 0 -mode hyper &

 Exec "Kaleid" exec xlock -nice 0 -mode kaleid &

 Exec "Life" exec xlock -nice 0 -mode life &

 Exec "Life3d" exec xlock -nice 0 -mode life3d &

 Exec "Maze" exec xlock -nice 0 -mode maze &

 Exec "Pyro" exec xlock -nice 0 -mode pyro &

 Exec "Qix" exec xlock -nice 0 -mode qix &

 Exec "Random" exec xlock -nice 0 -mode random &

 Exec "Rect" exec xlock -nice 0 -mode rect &

 Exec "Rock" exec xlock -nice 0 -mode rock &

 Exec "Rotor" exec xlock -nice 0 -mode rotor &

 Exec "Sphere" exec xlock -nice 0 -mode sphere &

 Exec "Spline" exec xlock -nice 0 -mode spline &

 Exec "Swarm" exec xlock -nice 0 -mode swarm &

 Exec "Wator" exec xlock -nice 0 -mode wator &

 Exec "Worm" exec xlock -nice 0 -mode worm &

 Exec "World" exec xlock -nice 0 -mode world &

 EndPopup

 Popup "Games"

 Title "Games"

 Exec "Maze" exec maze &

 Exec "Spider" exec spider &

 Exec "Workman" exec workman &

 Exec "Xboard" exec xboard &

 Exec "Xcuckoo" exec xcuckoo &

 Exec "Xeyes" exec xeyes &

 Exec "Xhextris" exec xhextris &

 Exec "Xlander" exec xlander &

 Exec "Xlogo" exec xlogo &

 Exec "Xmahjongg" exec xmahjongg &

 Exec "Xroach" exec xroach &

 Exec "Xtetris" exec xtetris &

 Exec "Xvier" exec xvier &

 EndPopup

 Popup "Applications"

 Title "Applications"

 Exec "Ghostview" exec ghostview &

 Exec "GNU Emacs" exec emacs &

 Exec "Lucid Emacs" exec lemacs &

 Exec "Seyon" exec seyon -modem /dev/modem &

 Exec "XV" exec xv &

 Exec "X3270" exec x3270 &

 Exec "Xedit" exec xedit &

 Exec "Xfig" exec xfig &

 Exec "Xfilemanager" exec xfilemanager &

 Exec "Xfm" exec xfm &

 Exec "Xfractint" exec rxvt -font 7x14 -e xfractint
map=chroma &

 Exec "Xgrab" exec xgrab &

 Exec "Xpaint" exec xpaint &

 Exec "Xspread" exec xspread &

 Exec "Xxgdb" exec xxgdb &

 EndPopup

 # This menu is invoked as a sub-menu

 # - it allows you to quit,

 # restart, or switch to another WM.

 Popup "Quit-Verify"

 Title "Really Quit Fvwm?"

 Quit "Yes, Really Quit"

 Restart "Restart Fvwm" fvwm

 Restart "Start twm" twm

 Restart "Start tvtwm" tvtwm

 Restart "Start mwm" mwm

 Restart "Start olvwm" /usr/openwin/bin/olvwm

 Restart "Start olwm" /usr/openwin/bin/olwm

 Nop ""

 Nop "No, Don't Quit"

 EndPopup

 # Provides a list of modules to fire off

 Popup "Module-Popup"

 Title "Modules"

 Module "GoodStuff" GoodStuff

 Module "Clean-Up" FvwmClean

 Module "Identify" FvwmIdent

 Module "SaveDesktop" FvwmSave

 Module "Debug" FvwmDebug

 Module "Pager" FvwmPager 0 3

 Module "FvwmWinList" FvwmWinList

 EndPopup

 # This menu will fire up some very common utilities

 Popup "Utilities"

 Title "Utilities"

 Exec "Top" exec rxvt -font 7x14 -T Top -n Top
-e

 top &

 Exec "Calculator" exec xcalc &

 Exec "Xman" exec xman &

 Exec "Xmag" exec xmag &

 Exec "Oclock" exec oclock &

 Nop ""

 Popup "Applications" Applications

 Nop ""

 Popup "Shells" Shells

 Nop ""

 Popup "Games" Games

 Nop ""

 Popup "Screensaver" Screensaver

 Nop ""

 Popup "Lock Screen" Screenlock

 Nop ""

 Popup "Modules" Module-Popup

 Nop ""

 Popup "Exit Fvwm" Quit-Verify

 Nop ""

 Refresh "Refresh Screen"

 EndPopup

 # This defines the most common window operations

 # Modified to be more like Motif window manager.

 Popup "Window Ops"

 Title "Window Ops"

 Function "Move (Alt-F7)" Move-or-Raise

 Function "Resize (Alt-F8)" Resize-or-Raise

 Raise "Restore (Alt-F5)"

 Lower "Lower (Alt-F3)"

 Iconify "Minimize (Alt-F9)"

 Function "Maximize (Alt-F10)" maximize_func

 Nop ""

 Destroy "Destroy"

 Delete "Delete"

 Nop ""

 Refresh "Refresh Screen"

 EndPopup

 # A trimmeddown version of "Window Ops",

 # good for binding to decorations

 Popup "Window Ops2"

 Function "Move (Alt-F7)" Move-or-Raise

 Function "Resize" Resize-or-Raise

 Raise "Raise"

 Lower "Lower"

 Iconify "Iconify"

 Stick "(Un)Stick"

 Nop ""

 Destroy "Destroy"

 Delete "Delete"

 Nop ""

 Module "ScrollBar" FvwmScroll 2 2

 EndPopup

 #####################################

 # One more complex function - couldn't be

 # defined earlier because it used

 # pop-up menus.

 #

 # This creates a Motif-ish sticky menu for

 # the titlebar window-ops

 # pop-up

 # Menu acts like normal twm menu if you

 # just hold the button down,

 # but if you click instead, the menu

 # stays up, Motif style

 # Was Window Ops2

 Function "window_ops_func"

 PopUp "Click" Window Ops

 PopUp "Motion" Window Ops

 # Motif would add

 Delete "DoubleClick"

 EndFunction

 #####################################

 # This defines the mouse bindings

 # First, for the mouse in the root window

 # Button 1 gives the Utilities menu

 # Button 2 gives the Window Ops menu

 # Button 3 gives the WindowList (like TwmWindows)

 # I use the AnyModifier (A) option for the

 # modifier field, so you can hold down

 # any shift-control-whatever combination you want!

 # Button Context Modifi Function

 Mouse 1 R A PopUp "Utilities"

 Mouse 2 R A PopUp "Window Ops"

 Mouse 3 R A WindowList

 #Mouse 3 R A Module "winlist" FvwmWinList
transient

 # Now the title bar buttons

 # Any button in the left titlebar button gives the window ops menu

 # Any button in the right titlebar button iconifies the window

 # Any button in the rightmost titlebar button maximizes

 # Note the use of "Mouse 0" for AnyButton.

 # Button Context Modifi Function

 Mouse 0 1 A Function "window_ops_func"

 Mouse 0 2 A Function "maximize_func"

 Mouse 0 4 A Iconify

 # Now the rest of the frame

 # Here I invoke my complex functions for

 # Move-or-lower, Move-or-raise,

 # and Resize-or-Raise.

 # Button 1 in the corner pieces, with any

 # modifiers, gives resize or raise

 # Allow resizing from window border, like mwm.

 Mouse 1 FS A Function "Resize-or-Raise"

 # Button 1 in the title, sides, or icon,

 # w/ any modifiers, gives move or raise

 Mouse 1 T A Function "Move-or-Raise"

 # Button 1 in an icon gives move for a

 # drag, de-iconify for a double-click,

 # nothing for a single click

 # Button 2 in an icon, w/ any modifiers,

 # gives de-iconify

 Mouse 1 I A Function "Move-or-Iconify"

 Mouse 2 I A Iconify

 # Button 2 in the corners, sides, or titlebar

 # gives the window ops menu

 Mouse 2 FST A Function "window_ops_func"

 # Button 3 anywhere in the decoration

 # (except the title bar buttons)

 # does a raise-lower

 Mouse 3 TSIF A RaiseLower

 # Button 3 in the window, with the Modifier-1

 # key (usually Alt or diamond)

 # gives Raise-Lower. Used to use control

 # here, but that interferes with xterm

 Mouse 3 W M RaiseLower

 #####################################

 # Now some keyboard shortcuts.

 # Arrow Keys

 # press arrow + control anywhere,

 # and scroll by 1 page

 Key Left A C Scroll -100 0

 Key Right A C Scroll +100 +0

 Key Up A C Scroll +0 -100

 Key Down A C Scroll +0 +100

 # press arrow + meta key,

 # and scroll by 1/10 of a page

 Key Left A M Scroll -10 +0

 Key Right A M Scroll +10 +0

 Key Up A M Scroll +0 -10

 Key Down A M Scroll +0 +10

 # press shift arrow + control anywhere,

 # and move the pointer by 1% of a page

 Key Left A SC CursorMove -1 0

 Key Right A SC CursorMove +1 +0

 Key Up A SC CursorMove +0 -1

 Key Down A SC CursorMove +0 +1

 # press shift arrow + meta key and

 # move the pointer by 1/10 of a page

 Key Left A SM CursorMove -10 +0

 Key Right A SM CursorMove +10 +0

 Key Up A SM CursorMove +0 -10

 Key Down A SM CursorMove +0 +10

 # Keyboard accelerators

 #Key F1 A M Popup "Utilities"

 #Key F1 A M Popup "Utilities"

 #Key F2 A M Popup "Window Ops"

 #Key F3 A M Module "WindowList" FvwmWinList

 #Key F4 A M Iconify

 #Key F5 A M Move

 #Key F6 A M Resize

 #Key F7 A M CirculateUp

 #Key F8 A M CirculateDown

 #

 Key F1 WFST M Raise

 Key F2 WFST M Delete

 Key F3 WFST M Lower

 Key F4 WFST M Destroy

 Key F5 WFST M Raise

 Key F6 A M WindowList

 Key F7 WFST M Move

 Key F8 WFST M Resize

 Key F9 WFST M Iconify

 Key F10 WFST M Maximize

 #Page Up/Dapge Down keys are used to

 # scroll by one desktop page

 # in any context, press page up/down + control

 # in root context, just pressing page up/down is OK

 #

 # I prefer the non-wrapping scroll. These

 # are for example purposes only

 #Key Next A C Scroll 100000 0

 #Key Next R N Scroll 100000 0

 #Key Prior A C Scroll -100000 0

 #Key Prior R N Scroll -100000 0

 #####################################

 #####################################

 #Definitions used by the modules

 ######### GoodStuff button-bar ######

 # Colors

 *GoodStuffFore Black

 *GoodStuffBack #908090

 # Font

 GoodStuffFont -adobe-helvetica-bold-r--*-10-*-*-*-*-*-*-*

 # Geometry - really likes to pick its own size, but giving a
position

 is OK

 *GoodStuffGeometry -1-90

 # Layout: specify rows or columns, not both

 *GoodStuffColumns 1

 # Define the buttons to use....

 *GoodStuff Kill rbomb.xpm Destroy

 # xterm or rxvts on remote machines can be done like this

 # Output redirection is csh style, not sh style

 # You will want to substitute your own hosts here!

 #*GoodStuff Dopey rterm.xpm Exec "dopey" rsh dopey "exec xterm -
T

 dopey -display $HOSTDISPLAY </dev/null >&/dev/null & "&

 #*GoodStuff Grumpy rterm.xpm Exec "grumpy" rsh grumpy "exec
xterm -T

 grumpy -display $HOSTDISPLAY </dev/null >&/dev/null & "&

 #*GoodStuff Snoopy rterm.xpm Exec "snoopy" rsh snoopy "exec
xterm -T

 snoopy -display $HOSTDISPLAY </dev/null >&/dev/null & "&

 #*GoodStuff Xcalc rcalc.xpm Exec "Calculator" xcalc &

 #*GoodStuff mail mail2.xpm Exec "xmh" xmh &

 #*GoodStuff Paging clamp.xpm TogglePage

 #*GoodStuff xclock clock.xpm Swallow "xclock" xclock -bg
\#908090 -

 geometry -1500-1500 -padding 0 &

 ########## No Clutter ###############

 # I only wrote NoClutter as a simple test

 # case, but maybe some big sites like

 # universities really have usage problems

 # (too many open windows)....

 # Time delays are in seconds.

 *FvwmNoClutter 3600 Iconify 1

 *FvwmNoClutter 86400 Delete

 *FvwmNoCLutter 172800 Destroy

 ########## Window-Identifier ########

 # Just choose colors and a fonts

 *FvwmIdentBack MidnightBlue

 *FvwmIdentFore Yellow

 FvwmIdentFont -adobe-helvetica-medium-r--*-12-*-*-*-*-*-*-*

 ############## Pager ################

 *FvwmPagerBack #908090

 *FvwmPagerFore #484048

 FvwmPagerFont -adobe-helvetica-bold-r--*-10-*-*-*-*-*-*-*

 *FvwmPagerHilight #cab3ca

 *FvwmPagerGeometry -1-1

 *FvwmPagerLabel 0 Misc

 *FvwmPagerLabel 1 FrameMaker

 *FvwmPagerLabel 2 Mail

 *FvwmPagerLabel 3 Matlab

 *FvwmPagerSmallFont 5x8

 ##############FvwmWinList############

 *FvwmWinListBack #908090

 *FvwmWinListFore Black

 FvwmWinListFont -adobe-helvetica-bold-r--*-10-*-*-*-*-*-*-*

 *FvwmWinListAction Click1 Iconify -1,Focus

 *FvwmWinListAction Click2 Iconify

 *FvwmWinListAction Click3 Module "FvwmIdent" FvwmIdent

 *FvwmWinListUseSkipList

 *FvwmWinListGeometry +0-1

Previous Table of Contents Next

-->

Previous Table of Contents Next

Exiting X from Fvwm

To exit from fvwm and usually quit X (if fvwm is the last X application in your .xinitrc or .xsession
file), you usually call up the fvwm root menu and quit. The default choices are Exit Fvwm, which
invokes a submenu to confirm, and Yes, Really Quit.

Summary

The X Window System is a graphical interface used by Linux, and it comes in the form of XFree86, a
version of X optimized for the PC architecture.

This chapter deals with one of the most tedious, nonintuitive, and uninspiring aspects of Linux
installation and configuration—messing around with XFree86. You learned about all the mundane
details that go into a typical XFree86 configuration process, including mucking around with various files
and settings.

X runs through a series of configuration files after it’s launched. Some of these files control what
applications begin when X begins, while other files add functionality in the form of the X Display
Manager.

Once you have X up and running, you can run some of the many neat X-based programs that ship with
the Slackware distribution. One of the handiest is xterm, an admittedly blah program that gives you a
UNIX-like terminal (and, by extension, access to the UNIX command line). We find that most Linux
users use xterm, making it one of the most popular X Window applications. In this chapter we discuss
xterm, how to configure it, and how to use it.

The fvwm window manager is advertised as being Motif-like, and it is—on the surface. After you use it
for a while, you’ll learn that it doesn’t respond to the same commands as the Motif window manager
(mwm), and all in all it works differently than does mwm.

In the next chapter we’ll cover additional Linux tools, both character-based and X-based.

Previous Table of Contents Next

-->

Previous Table of Contents Next

Section II
Using Linux

Now that you have Linux installed and configured on your PC, it’s time for the fun part—actually using
it.

Chapter 4 covers basic Linux tools that you’ll probably use every day in some fashion. The coverage
here focuses on tools that are unique to Linux, whether they be features not found in other UNIX
implementations or features found in the UNIX world that have been slightly changed for use under
Linux. A good example of this is the elvis text editor, which is a clone of the ubiquitous vi editor.

Chapter 5 covers additional Linux tools that you probably won’t use every day, but that will still come in
handy. This would include the emacs text editor and the Mtools, which are specific to Linux and allow
Linux to interoperate mare easily with the PC architecture.

Chapter 6 introduces basic system administration and the tools you’ll need to use Linux on a long-term
basis, whether you’re working on a standalone system or a network. These include utilities for hard-disk
usage, managing users, and scheduling tasks.

Chapter 4
Basic Linux Tools

This chapter covers:

• Linux tools
• The Linux filesystem
• File types
• File permissions
• Basic Linux commands
• Wildcards
• Other ways of viewing files
• Linux and passwords
• Linux shells
• Using the elvis text editor

Linux Tools

Because it’s a UNIX workalike, you’d expect Linux to toe the line when it comes to UNIX design
philosophy and user tools. Design philosophy? Yes. As an operating system, UNIX can be seen as a
collection of tools, some more important than others. Because UNIX (and Linux, for that matter)
originally evolved through the contributions of a widespread computing community, UNIX tools tend to
spring up in response to specific situations: When a problem needed to be solved, either a new command
was added or new options were added to old commands.

This tool-based approach is what gives UNIX much of its perceived complexity. Compared to Microsoft
Windows and the Macintosh operating system, the use of UNIX tools like vi and ls may seem to be
fairly archaic and nonintuitive. For the outsider, they are.

But once you spend some time with UNIX and its command structure, you’ll see that there’s a great deal
of logic underlying the UNIX operating system—and by extension, the Linux operating system. Once
you’ve mastered a few Linux commands, you can move on to more complex command lines and more
complex computing chores. We’ll begin this chapter with a discussion of basic UNIX/Linux commands
and concepts. In the next chapter, we’ll discuss more advanced Linux tools. The tools in this chapter can
be run from a command line or under the X Window System in an xterm window.

NOTE: If you’re a computing neophyte, you may want to check out a basic UNIX text (such as
teach yourself . . . UNIX, Third Edition—MIS:Press) for a more detailed explanation of UNIX
directories, files, commands, command lines, pipes, and standard input/output. See Appendix A
for details.

The Linux Filesystem

Linux organizes your information in files. Files can contain text, programming information, shell scripts,
or virtually any other kind of information.

We’re not going to spend a lot of time on this basic concept here or on the different types of files under
the UNIX operating system; if you’re not sure what a file is, you should check out one of the basic
UNIX texts listed in Appendix A. However, there are some things you should know about how Linux
treats files:

• Linux has no practical limit on the length of filenames. While there are some internal limits
on filename size (namely, 256 characters), you’re probably not going to run into these limits. If
you’re frustrated by DOS’s eight-dot-three filename limitation, you’ll be pleased with this aspect
of Linux. However, if you’re using Linux on a network with other forms of UNIX, you’ll
probably want to limit your filenames to a 14-character limit, because this is the general limit in
the UNIX world.

• Linux has few limitations on what characters can be used in filenames. Generally speaking,
you shouldn’t use the following characters in filenames:

 ! @ # $ % ^ & () [] { } ' " ? | ; < > ` + - \ / . ..

These characters have a tendency to conflict with the shell. In addition, you can’t use spaces in
the middle of a filename.
• With Linux, case always counts, and that includes filenames. Under Linux, report, Report,
and REPORT are three different files.

A file can be looked at in a few different ways when it comes to the name. When we refer to files
throughout this chapter, we’re mainly speaking about the filename itself (like test) and not the absolute
pathname. Under Linux, an absolute filename is the name of the file as measured from the root
directory. Therefore, a file that’s stored in a subdirectory (which you’ll learn about later in this chapter)
named /home/kevinr would have an absolute pathname of /home/kevinr/test. When we refer to test
without a reference to the subdirectory containing it, we’re referring to its relative pathname. There’s a
lot more rigmarole to do with relative pathnames, but you’ll probably not deal with it all that often.

One difference from MS-DOS that you’ll notice: With Linux, there’s no such thing as drive names.
There’s a single filesystem, and any differences in physical media are pretty much abstracted away. This
is why the CD-ROM drive actually appears as part of the filesystem as /cdrom. Similarly, the floppy
drive is represented by a device driver, not a physical drive letter. (There are ways that Linux deals with
floppy drives; some of them will be covered in Chapter 5.)

Previous Table of Contents Next

-->

Previous Table of Contents Next

File Types

Under Linux, a file can be one of several types:

• Ordinary files
• Directories
• Links
• Special device files

We’re not going to spend a lot of time discussing each of these file types; you should be able to see the
difference between them in the short explanations here. If you want more information about UNIX file
types, check out one of the UNIX texts listed in Appendix A.

Ordinary Files

Ordinary files win the Linux prize for truth in advertising; they tend to be rather ordinary. Generally
speaking, you’ll spend most of your time working with ordinary files of some sort:

• Text files are made up of ASCII text. For example, when you create a file in emacs, you’re
creating a text file. In addition, if you create source-code files for use in programming, you’re
creating text files.
• Data files may contain special characters not contained in the ASCII set. For example, the xv
graphics editor creates and edits files in various graphics formats. Because these files contain non-
ASCII characters, they are data files. The same would go for files created by a database manager
or a spreadsheet manager.
• Command text files, also known as shell scripts, contain ASCII characters but are marked
differently from other Linux files.
• Executable files are binary program files that are created when source-code files are compiled.

Directories

Directories are, well, directories. Under Linux, a directory is also a file that contains information about
the directory. (Talk about the ultimate in self-referential logic…) You’ll learn more about directories
soon, but the important thing to know is that directories can have the same sort of limitations—i.e.,
permissions—as can files.

Links

A link is a reference to another file within the filesystem. This allows a file to be in two (or more) places
at the same time—in its original file location and at the reference elsewhere in the filesystem. You’ll
learn more about links later in this chapter.

Special Device Files

In a sense, you’ve already covered this type of file in Chapter 2, when you learned how Linux refers to
various portions of the PC architecture, such as /dev/hda for the hard drive. These references are called
device files, and they are used by Linux to represent physical portions of the PC. Under Linux—and
under UNIX, for that matter—everything is a file, whether it a collection of data, a device file
representing a physical piece of hardware (such as a printer, disk drive, etc.), or the kernel of the
operating system itself. Similarly, even if you’ve installed Linux on a PC with multiple hard drives,
you’ll never see a difference in the way Linux treats the separate drives; there will be only one large
filesystem.

How Linux Organizes Files and Directories

Most important Linux commands deal with the management of files and directories. Therefore, it’s
important that we take a moment and explain exactly how Linux treats these files and directories.

Like DOS, Windows, the Macintosh OS, and other versions of UNIX, Linux stores files in a hierarchical
fashion; files are stored in directories, and directories (or subdirectories) are stored in other directories.
The only directory that’s not a subdirectory of another directory is the root directory. This directory
doesn’t have a name (like bin, as seen in Table 4.1). Instead, the root directory is indicated by a slash (/).
This is the opposite of MS-DOS, which uses the backslash (\) to indicate the root directory. The
directory above the current directory in the hierarchy is called the parent directory. The Linux
installation process creates quite a few directories, including the main subdirectories of the root
directory. It’s handy to know what’s contained in these directories; they’ll be the first place to look for
specific files. Table 4.1 lists the main directories found in the root directory.

Table 4.1The Main Subdirectories of the Root Directory

Directory Contents

bin Binary files

boot Information needed to boot the system

cdrom CD-ROM drive, if Linux supports your CD-ROM drive

dev Device drivers

etc Miscellaneous files, mostly used in system administration

home The home directory for users

lib Programming libraries

tmp Temporary storage of temporary files

usr Commands

var System definitions

NOTE: Case counts in Linux across the board, as you’ll learn time and time again. (This is
different from DOS, where case doesn’t matter.) If you tell Linux to look for a directory named
BIN, the system won’t find this directory. However, if you tell Linux to look for bin, the system
will find it.

The same goes for Linux commands—when we tell you to use the cd command, we mean cd, not
Cd, CD, or cD. Again, this is different from DOS.

Depending on how you installed Linux, you may also have a directory called dos, dosc, or something
similar, which contains the MS-DOS partition on your hard drive.

Previous Table of Contents Next

-->

Previous Table of Contents Next

Your Home Directory

When you set up a user account in Chapter 2, you also created a home directory for the user (in this case,
you). You can think of your home directory as a base for operations. When you login the system, you’re
automatically placed in this directory, and default files for important applications (such as emacs) have
been automatically been copied to this directory. Generally, it’s a good idea to name the directory the
same as the login name of the user; in Chapter 2, for example, the home directory was named kevinr.
The absolute filename of this home directory is /home/kevinr.

You should keep all your files in your home directory. In fact, the default Linux installation gives you
no choice other than to store your files in this directory, as file permissions don’t allow you to write to
any other directories. (The root user, on the other hand, can do anything to any directory.) You can
create subdirectories, however, to better help you organize the many files that you’ll inevitably create as
a result of your Linux usage.

You can always use the tilde character (~) as a shortcut for the home directory, as you’ll see in the
following commands.

Moving Between Directories with Cd

At any given time, you can be placed in only one directory, which is your current or working directory.
If you visualize the directory scheme as a hierarchy, you can also visualize moving between various
parts of that hierarchy. The Linux command that allows you to move between directories is cd. You can
use to the cd command to point to a specific directory:

 gilbert:/$ cd /usr

 gilbert:/usr$

NOTE: The Bourne Again SHell, or bash, is set up by default on Linux systems. Bash is
designed to show the name of the machine on a prompt (in this instance, gilbert), as well as the
current directory. (A colon is used to separate the machine name and the current directory.) As
you can see in the previous example, the first line shows that the current directory is /, or the root
directory. In the second line—after running the cd command—the current directory is /usr.

NOTE: We’re getting ahead of ourselves here a bit, diving into UNIX commands without every
really describing them. For now, suffice it to say that a command is a direct instruction to the
Linux system.

The cd command can be used in many different ways. You can use it to make the root directory your
current directory:

 gilbert:/usr$ cd /

 gilbert:/$

You can also use it to move up a single directory in the hierarchy. In the next example, your current
directory is /usr/doc and you want to make the /usr directory your current directory. To do this, you’ll
need to know that Linux always represents the current directory with a period (.) and the parent
directory with two periods (..). The following command line, then, would move your current directory
to the parent directory:

 gilbert:/usr/doc$ cd ..

 gilbert:/usr$

The explanation probably made this example seem more complex than it is.

You can also use cd to make a subdirectory your current directory. The trick here is knowing that you’ll
want to move to a directory relative to your current directory. Knowing that doc is a subdirectory of the
current directory /usr, you would move to the doc directory with the following command line:

 gilbert:/usr$ cd doc

 gilbert:/usr/doc$

However, if you used the following command line, you’d experience failure:

 gilbert:/usr$ cd /doc

 bash: /doc: No such file or directory

You’re generating this error message because doc and /doc would be two different directories—doc
exists as a subdirectory of the current directory, while /doc would need to be a subdirectory of the root
directory (hence the leading slash). Beginners are sometimes confused by this point.

Another command line that would generate a failure is:

 gilbert:~$ cd..

 bash: cd..: not found

Without the space between the cd command and the notation for the higher-level command, the shell
doesn’t understand your request.

You can also move to your home directory at any time, no matter what the current directory is, with the
following command:

 gilbert:/usr$ cd ~

 gilbert:~$

The tilde (~) symbol can be used at any time and in other commands as shorthand for your home
directory. In addition, using cd without a new directory specification will automatically lead you to your
home directory:

 gilbert:/usr$ cd

 gilbert:~$

WARNING: There’s really only one restriction to the cd command: You must have execute

permission for the directory you’re switching to.

If you decide to go with another Linux shell that doesn’t list the current directory (see “Linux Shells,”
later in this chapter) at the beginning of the prompt, you’ll need to use the pwd (short for print working
directory) command to print the name of the current working directory:

 gilbert:/usr$ pwd

 /usr

Previous Table of Contents Next

-->

Previous Table of Contents Next

File Permissions and Linux

When you first use your Linux system and are not logged in as the root user, you might be in for some
rude surprises when you try to write to a directory that’s not your own home directory. Essentially,
Linux will tell you that you cannot write to the directory.

Because UNIX is a creature centered around security, Linux allows permissions to be designated for
files and directories. If you lack the proper permissions, you can’t change files or directories. The root
user, of course, has the proper permissions to access every file in the Linux filesystem (which means that
you shouldn’t expect absolute security if you’re working on a larger system). Under Linux, there are
three different levels of permissions: owner, group, and world.

Permissions are an extremely frustrating part of Linux if you’re a new user. While there are permissions
under DOS, they are not frequently used.

To find what permissions are applied to files, use the following command line:

 gilbert:/$ ls -l

 -rwxrwxrwx 1 kevinr group1 512 Apr 3 19:12 test

 -rwxrwxrwx 1 kevinr group1 512 Apr 3 19:27 test.bk

 drwxrwxrwx 1 kevinr group1 2146 Apr 1 04:41 memos

 -rwx------ 1 kevinr group1 854 Apr 2 19:12 data

There’s actually a rhyme and reason to the mess of numbers and letters presented here, but it’s best
explained going right to left in columns (and focusing on the first line of the listings):

• The eighth column (test) lists the filename.
• The seventh column (19:12) lists the time the file was created.
• The sixth column (Apr 3) lists the date the file was created.
• The fifth column (512) lists the size of the file in bytes.
• The fourth column (group1) lists the group the file belongs to. (We’ll explain this later.)

• The third column (kevinr) lists the owner of the file.
• The second column (1) shows the number of links to the file.
• The first column (-rwxrwxrwx) lists the permissions associated with the file and the type of
the file.

The leading hyphen (-) tells us that the file is an ordinary file, which was covered earlier in this section.
When you do an ls -l, you’ll see various file-type listings, shown in Table 4.2.

Table 4.2File Types Listed with the ls -l Command Line

Listing File Type

- Ordinary file.

d Directory.

l Link.

There are other file types listed with this command, but you won’t usually see them with Linux.

Permission Lines

The remainder of the first column, covering specific permissions, commands most of our attention in
this discussion. Basically, the permissions are broken down into three groups. Remember that
permissions are applied to the owner of the file (in this case, kevinr), the group of the file (in this case,
group1), and the world at large. Applying this trinity to a permission line of rwxrwxrwx, we can see
that the owner has the ability to read the file (indicated by r), write the file (indicated by w), and execute
the file (indicated by x). Moving on, the group has the ability to read the file (indicated by r), write the
file (indicated by w), and execute the file (indicated by x). Finally, the world has the ability to read the
file (indicated by r), write the file (indicated by w), and execute the file (indicated by x). In other words,
this file is free game for anyone with access to your Linux filesystem.

Things are a little different with the following listing:

 -rwx------ 1 kevinr group1 854 Apr 2 19:12 data

When there are no letters indicating a permission—as in the case with the hyphen—the permissions are
restricted. With this file, the owner has the ability to read the file (indicated by r), write the file
(indicated by w), and execute the file (indicated by w). However, no one else has any permissions with
this file.

With most of the Linux operating system, you’ll see a permission like rwxr-xr-x, with root being the
owner of the file. In this instance, an average user (that is, someone not logged in as root) has the ability
to execute files (an important capability to have) and read the files but lacks the ability to write (that is,
change) the file. This protection exists for many reasons, but basically it exists to prevent users from
wreaking unanticipated havoc.

NOTE: When you install and configure new software on your Linux system and want to install it
in one of the standard file locations, you’ll need to login as root.

Previous Table of Contents Next

-->

Previous Table of Contents Next

Changing Permissions

The Linux command chmod changes file permissions. You may want to change permissions for some
popular directories in order to avoid logging in as root to install or configure software.

NOTE: Unless you have write permission for a file or directory, you can’t change the
permissions. Of course, this means that you need to be logged in as root in order to change
permissions.

Permissions can be changed in numeric or symbolic form. Neither method is what could be called
intuitive, so we’ll spend some time explaining each of them.

The Numeric Method

The numeric method uses numbers to track permissions. Like the permissions listings earlier in this
section, the numeric method divides permissions into threes, albeit in a different manner.

The numeric method forces you to add three different sets of numbers in determining who has which
permissions. The actual types of permissions (owner, group, world) haven’t changed—only the method
of listing them.

You’ll use modes to track permissions, as seen in Table 4.3.

Table 4.3Modes and Their Meanings

Mode Meaning

400 Owner has read permission.

200 Owner has write permission.

100 Owner has execute permission.

040 Group has read permission.

020 Group has write permission.

010 Group has execute permission.

004 World has read permission.

002 World has write permission.

001 World has execute permission.

You must now translate these numbers into the numeric form by adding them together. For example,
using the following directory listing:

 -rwx—x—x 1 kevinr group1 854 Apr 2 19:12 test

we arrive at a numeric permission of 711:

400 Owner has read permission.

200 Owner has write permission.

100 Owner has execute permission.

010 Group has execute permission.

001 World has execute permission.

——

711

A file or directory that’s totally open to the world would have a permission of 777; a file or directory
inaccessible to anyone would have a permission of 000.

Changing the permissions entails combining the desired permissions with the chmod command. For
example, to change the file permissions of the test command to make it totally accessible to all users,
you’d use the following command line:

 gilbert:/$ chmod 777 test

To change the permissions so that only the owner of the file has the ability to totally access the file and
at the same time permission is denied to every other user, you’d use the following command line:

 gilbert:/$ chmod 700 test

To change the permissions so that the owner of the file has the ability to totally access the file, but other
users and the group have the ability to read and execute (but not change) the file, you’d use the
following command line:

 gilbert:/$ chmod 744 test

The Symbolic Method

When using the numeric method, you don’t need to know the existing permissions of the file, which
means that you need enter only the desired permissions. The other main method of setting permissions,
called the symbolic method, requires that you know the existing permissions, as you’re setting new
permissions relative to the existing permissions.

The symbolic method eschews numerals and uses letters instead. And it’s very precise in adding or
subtracting permissions relative to existing permissions. For example, the following command line gives
execute permissions to the world (all users):

 gilbert:/$ chmod o+x data

Here, o refers to “others” (in chmod parlance, the world), x refers to execute permission, and the plus
sign (+) adds the execute permission to others. If a minus sign (-) were used, this command line would
remove execute permission from others.

The symbolic method uses some quirky language, as you’ve already seen with the reference to others.
The owner of the file is referred to as the user, and setting permissions for the owner means using u:

 gilbert:/$ chmod u+x data

Setting the permission for the group is a matter of using g:

 gilbert:/$ chmod g+x data

These statements, of course, would be meaningless if the users already had the ability to execute the file.

Table 4.4 lists the various symbols used with the chmod command.

Table 4.4Symbols Used with the Symbolic Method

Symbol Meaning

u User (owner of the file).

g Group.

o Other (the world).

a Everyone (the owner, the group, and the world).

+ Adds permission.

- Removes permission.

r Read permission.

w Write permission.

x Execute permission.

t Sets the “sticky bit” on a directory.

NOTE: If you create your own shell scripts or use the Perl language, you’ll need to set
permissions to make your scripts usable.

Previous Table of Contents Next

-->

Previous Table of Contents Next

Changing Ownerships and Permissions

In the act of creating a file or directory, you automatically assign permissions to the file or directory. To
see what permissions are the default, use the umask command:

 $ umask

 744

This means that the owner of the file has full privileges, while your group and the world have the ability
to read the file. To change this permission, you’ll again use the umask command, listing a new
permission on the command line:

 $ umask 007

This may look odd, and indeed it is odd. The umask command changes permissions relative to a
baseline of 777. The input to the umask command is therefore subtracted from the baseline 777, leaving
you with the total of 770, meaning that the owner of the file and the group have full permissions to the
file, while the rest of the world has no permissions at all.

In the same way, you’re automatically the owner of a file when you create it, but there may be times
when you want to transfer this ownership to another user. You can do so with the chown command,
provided you’re logged in the system as the root user. (You didn’t think you could change the ownership
logged in as an ordinary user, did you? If anyone could change the ownership of a file, security in the
UNIX operating system would be nonexistent.) When using the chown (short for change ownership, by
the way) command, you list the new owner of the command and the file in question:

 gilbert:~$ chown pat report

You can also transfer ownership of an entire directory by using the -R option to the chown command:

 gilbert:~$ chown -R pat reports_1996

Similarly, the chgrp command changes group ownership of a file, listing the new group membership
and the file in question:

 gilbert:~$ chgrp linux_book chap4

The Sticky Bit

In our continuing obsession with security, we present information about the sticky bit. In the past, UNIX
hackers used to get around file permissions by messing with entire directories, as most system
administrators would forget to set restrictive permissions for the directory itself.

The sticky bit was a response to this security problem. Linux allows you to set the sticky bit, which
makes a directory impregnable to everyone but the owner of a directory and the root user. To set the
sticky bit, use the chmod command in the following manner:

 gilbert:/$ chmod +t directoryname

Once the sticky bit is set, no one (except the root user and the owner of the directory) has the ability to
move or delete files in a directory, no matter what permissions are associated with a file.

Dealing with Files and Directories

We’ve thrown around the term command a great deal without ever really defining it (our copy editor is
probably gnawing her red pen by this point), but we’re assuming you know what a command is and how
you give a command to the computer. And you also know that the combination of a command and any
options is called a command line.

NOTE: Under Linux, commands can be run at a command line or under the X Window System
in an xterm window (which we covered in Chapter 3). However, there are some cases when
there’s an X Window version of the UNIX command; for example, there’s a version of man for
the X Window System, called xman, that you should use instead. In this chapter, we’ll also note
the X Window version.

If you’ve used MS-DOS for any extended period, you’ll instantly recognize the Linux counterparts
presented here. If you’ve used Microsoft Windows for an extended period and have been hidden from
the command line, you may be somewhat confused initially when you run through this series of Linux
commands. And if you’re a UNIX workstation user, you’ll find that there might be slight differences
between the commands/options and the version of UNIX you’re used to working with. (If you’re a Cray
supercomputer user, you’re really slumming.)

NOTE: This section will touch only on the most basic and useful Linux commands. For a more
complete listing of Linux commands, check out Linux in Plain English—coming out shortly—or
teach yourself . . . UNIX, Third Edition (MIS:Press) both listed in Appendix A.

You’ve already learned about the cd and pwd commands, which are used to move between directories
and print the working directory, respectively. There are many more Linux commands used to deal with
directories and files.

Previous Table of Contents Next

-->

Previous Table of Contents Next

Listing Files and Directories with Ls and Dir

You’ll use the ls command, short for list, quite often—probably every time you use Linux, as a matter of
fact. You’ve already used ls in a discussion of permissions. The following command lists the contents of
the current directory or a specified directory:

 gilbert:/$ ls

 bin/ dev/ home/ mnt/ sbin/ var/

 boot/ dos/ lib/ proc/ tmp/
vmlinuz

 cdrom/ etc/ lost+found root/ usr/

If you’re a UNIX user, this is probably not the version of ls you’re used to, especially if you try this
command on your own Linux box. The ls version contained with Linux is actually the GNU version of
ls. As such, it makes several improvements to the basic ls command found on other versions of UNIX.
One improvement, which we can’t show you in the confines of a black-and-white text, is the addition of
color to indicate directories (which will appear on your color monitor as blue) and special types of files.
(Later in this section we’ll explain how to change these colors and what the colors mean.) Linux also
uses slashes after the name to indicate directories.

In addition, ls (by default) sorts files and directories in ASCII order, in columns. That’s why the first
column contains the directories beginning with b and c, followed by the rest of the alphabet. If there
were directories that began with any capital letter, they’d be listed first; the directory X/ would appear
before bin/, because under ASCII uppercase letters precede lowercase letters.

NOTE: The Bourne Again SHell, bash, also supports the dir command in a limited sense. The
dir command does the same thing as the ls -l command, which will be explained later in this
section. DOS users will be relieved to know that their familiar dir command can also be used
under Linux.

You can use one of the many command-line options to the ls command. For example, if you use the ls

command in your home directory, you’ll discover that there are no apparent files to be found:

 gilbert:~$ ls

 gilbert:~$

However, if you run the command with the -a option, you’ll see the following:

 gilbert:~$ ls -a

 ./ .bash_history .kermrc .lessrc

 ../ .emacs .less .term/

The files beginning with the period (.) are called hidden files. Actually, they’re not so hidden as to be
mysterious; they’re merely hidden when you use the ls command to search for files. The -a option tells
the ls command to look for all files.

There are two other listings—. and ..—that may be unfamiliar if you’re not a UNIX user. The single
period (.) is merely another way to display the current directory, while the double period (..) is used to
display the parent directory.

The -l (ell, not one) option to ls prints a long list of the directory’s contents:

 gilbert:~$ ls -l

The ls command can also be used to determine the existence of a single file in short form:

 gilbert:~$ ls data

 data

or in long form:

 gilbert:~$ ls -l data

 -rwx------ 1 kevinr group1 854 Apr 2 19:12 data

Table 4.5 summarizes the ls command’s important options.

Table 4.5A Summary of the Ls Command Options

Option Result

-a Lists all files, including hidden files.

-A Lists all files, except for the . and .. listings.

-c Sorts files by the time they were last changed, rather than by the default
ASCII order, beginning with the oldest file.

-d Lists only the name of a directory, not its contents.

-l Lists files and directories in long format.

-r Lists the contents in reverse order.

-t Sorts files by the time they were last changed beginning with the newest
file.

-x Lists files and sorts them across the page instead of by columns.

NOTE: The ls command isn’t the only tool for viewing files and directories on a Linux system.
If you’ve installed XFree86, there’s a file manager that can be used to graphically display the
contents of your Linux system (see Chapter 5 for details). And there’s a command-line tool, the
Midnight Commander, that works similarly to the Norton Commander (a once-popular MS-DOS
application) (see Chapter 5 for details).

Changing the Ls Colors

Although we can’t show you, ls does indeed display different types of files in different colors. While
you probably don’t want to change these colors, Linux gives you the ability to do so. (Indeed, Linux
gives you the ability to do a great many things you’ll probably never bother to do, but that’s to the credit
of the people who put Linux together.) The settings for these colors are stored in the file /etc/
DIR_COLORS, and this file is used by all users. If you want to change these settings, you need to copy
this file to your home directory, rename the file .dir_colors (making it a hidden file), and edit the
listings in the file. As with many of the configuration files used with Linux, there’s enough comments in

the default /etc/DIR_COLORS to guide you through any editing session.

Previous Table of Contents Next

-->

Previous Table of Contents Next

Wildcards

Like UNIX (and DOS, for that matter), Linux supports wildcards in command lines and shells scripts. A
wildcard is merely shorthand for a character or a string of characters. Wildcards can come in handy if
you’re looking for a file and you’ve forgotten the specific filename (geez, I know the file ends in 1996),
or if you want to see a list of files that fall within specific parameters (such as ending with .c, useful if
you plan on using Linux for software development).

There are three types of Linux wildcards: *, ?, and [...]. Each will be explained.

NOTE: Technically, wildcards are the province of the shell, and in theory a discussion of
wildcards should take place with a discussion of shells. For our purposes, however, we’re going
to discuss wildcards at this point in the Linux discussion, because what we’re saying here applies
to all shells.

In the previous section covering the ls command, we covered the command’s use when it’s applied to
single files. However, there may be times when you want to list a set of files that share a common
characteristic, such as ending with .c. In this instance, you can tell ls to look for every file that ends with .
c, using the following command line:

 gilbert:~$ ls *.c

 aardvark.c stuff.c titles.c xylophone.c

In this instance, ls is told to substitute * for any portion of a filename preceding an ending of .c. And, as
you can see from the list of files, the command was successful. The ls is used to match any number of
characters in a string, including zero characters:

 gilbert:~$ ls titles*

 titles titles.c

In the case of titles, the wildcard matched zero characters.

The asterisk (*) can be used at the beginning or end of a wildcard expression. You can also use more
than one asterisk in an expression:

 gilbert:~$ ls t*.*

 titles.c

If you wanted to list the files with the string titles anywhere in the filename, you could use the following
command line:

 gilbert:~$ ls *titles*

 subtitles titles titles.c

The asterisk wildcard is the most expansive wildcard available. On the other end of the spectrum is the
question-mark wildcard, which is used to match a single character:

 gilbert:~$ ls title?

 titles

In this instance, ls did not match titles.c, which contains two characters after the search string of title.
Titles, meanwhile, contained only one character after the search string of title, which matched the
parameters of the ls command.

The final wildcard is used to return specific characters, as defined by brackets ([]). For example, you’re
looking through a directory filled with memos from the last 12 months. Since you’ve been a good Linux
user, you’ve been placing a number at the end of every file, signifying the month it was written. (Yes,
we know you’re not likely to have too many files if you’ve just installed Linux. Think of this advice as
something you’ll need in the future.) You want to track down a memo you wrote sometime in the
summer, but you can’t remember the name of the file, and a reading through the directory listings don’t
spark a memory. In this instance, you’ll want to narrow down the directory listings to files ending in 6,
7, or 8 (corresponding to June, July, and August). To do this with the ls command, you’d enter 6–8 in
brackets:

 gilbert:~/memos$ ls *[6-8]

 golf.8 golfanne.8 golfpat.6 golfjim.6

 golftod.6 golftom.7

This narrows down the list of files returned by ls. It also means you probably play too much golf.

In the preceding example, we asked ls to return files that ended with a range of characters, i.e., in 6, 7, or
8. You can also use this wildcard to return a single character:

 gilbert:~/memos$ ls *[6]

 golfpat.6 golfjim.6 golftod.6

If you’re searching for a character (remembering, of course, that Linux distinguishes between uppercase
and lowercase letters at all times) or range of characters, you can list them in the brackets:

 gilbert:~/memos$ ls report.[Ee]rc

 report.Erc report.erc

Wildcards can be used with any Linux command.

Creating Directories with Mkdir

The mkdir command is used to create directories. If you plan on using Linux for most of your day-to-
day stuff, we advise creating directories to help organize the many files Linux (and any other version of
UNIX, for that matter) creates. Using mkdir is simple:

 gilbert:~$ mkdir directory

where directory is the name of the directory you want to create. To create a directory named letters in

your home directory, you’d use the following command:

 gilbert:~$ mkdir letters

To see if the directory was really created, you can use the ls command:

 gilbert:~$ ls

 letters/ text

You can also use it to create a new directory elsewhere in the directory hierarchy:

 gilbert:~$ mkdir /users/kevin/letters

 gilbert:~$ ls /users/kevin

 letters/

Mkdir can create more than one directory on a command line:

 gilbert:~$ mkdir letters data

 gilbert:~$ ls

 data/ letters/ text

Mkdir can also create a directory and a subdirectory in a single command line:

 gilbert:~$ mkdir -p /letters/eric

Other options to mkdir are listed in Table 4.6.

Table 4.6Other Options to the Mkdir Command

Option Result

m mode Sets the mode for the new directory.

Previous Table of Contents Next

-->

Previous Table of Contents Next

Using Cat

The cat command does so many things under the UNIX and Linux operating systems, it’s a wonder you
don’t use it for everything. On a very basic level, cat can be used to view the contents of a file:

 gilbert:~$ cat filename

where filename is the name of the file you want to view. For example, to view the contents of a file
named test, you’d use the following command line:

 gilbert:~$ cat test

 This is our Linux test file. Big whoop.

Cat, by default, displays its output to the screen. However, cat can be told to send its output elsewhere,
which brings us to another of its many uses: It can also be used to store a file under a different filename,
much in the manner of the cp command (which will be covered later in this chapter). For example, to
create another copy of the test file (which we’ll call memo.kr), you’d use the following command line:

 gilbert:~$ cat test > memo.kr

 gilbert:~$ ls

 memo.kr test

In this example, cat uses the output from the test file as the input for the memo.kr file.

Cat can also be used to create simple ASCII files; we say simple because cat sends your keyboard input
directly to a file, rather than giving you the chance to edit the file. (The full-screen editors elvis and
emacs can be used to edit files.) To create a simple file named memo, you’d use the following
command line:

 gilbert:~$ cat > memo

Anything you type would go directly into the memo file one line at a time. When creating a file like this,
there are a few things to remember:

• Hit the Enter key at the end of every line. Otherwise, part of your typing will end up in the
ether.
• You can move within the line using the Backspace key (well, partially, anyway; Backspace
will merely delete the preceding character). You can’t move to a previous line, however.
• Type Ctrl-D when you’re finished typing.

NOTE: The Ctrl-D sequence can be used whenever you run a Linux command that requires
keyboard input.

Finally, cat can be used to combine files. For example, you can add to the aforementioned memo file
with the following command line:

 gilbert:~$ cat >> memo

Whatever you type will be added to the memo file. The previous rules apply. In addition, you can
redirect two existing files as input to a new third file:

 gilbert:~$ cat memo1 memo2 > memo3

The order of the files on the command line determines the order of the data in the new file.

There are a host of options to the cat command; they are listed in Table 4.7.

Table 4.7Options to the Cat Command

Option Result

-b Numbers all lines, except for those not containing characters.

-n Numbers all lines.

-s Replaces a series of blank lines with a single blank line.

-v Prints nonprinting (i.e., control) characters.

Other Ways to View a File

Linux contains two handy tools for viewing a file: more and less. The more command is pretty simple;
the following command line launches more with the file test:

 gilbert:~$ more test

The more command presents one page of text at a time, with the percentage of text displayed at the
bottom of the screen. Use the Enter key to move forward one line in the document, or press the
Spacebar to move ahead an entire page. Unfortunately, you can’t move back to the beginning of a file
once it’s scrolled by.

In addition, more gives you the ability to search for a specific text string, by typing:

 /string

where string is the text string you want to search for.

Where Less is More Than More

The less command isn’t part of the standard UNIX distribution, but it’s a very useful addition to the
Linux command set. The less command provides more options when viewing a file—namely, the ability
to move both forward and backward through a file. Again, to use less to view the file named test, you’d
use the following command line:

 gilbert:~$ less test

As with more, you can use the /string option to search for text.

A big advantage to less is its ability to search backward through a file by pressing b.

NOTE: An X Window version of this program, xless, is also included as part of Slackware.

Using Head and Tail to View Portions of a File

If a file is especially large, you may not want to load all of it and try to scroll through it, particularly if
you’re just interested in a quick glance at its contents. In this case, you can use the head command to
view the beginning of the fil, or tail to view the end of the file. For both commands, the default is to
display 10 lines. Therefore, to display the first 10 lines of the file report, you’d use the following
command line:

 gilbert:~$ head report

To view the last 10 lines of the file report, you’d use the following command line:

 gilbert:~$ tail report

To change the default of 10 lines, you’d specify a new number as an argument to the command; the
following, for example, displays the first 20 lines of the file report:

 gilbert:~$ head -20 report

Viewing an Octal Dump with Od

Finally, there’s the od command, which allows you to view an octal dump of a file:

 $ od filename

where filename is the name of the file to be viewed.

Previous Table of Contents Next

-->

Previous Table of Contents Next

Finding the Magic Number with File

After you’ve been working on your Linux system for a while, you’ll accumulate many files if you do
any serious work at all. If you’re a careful worker, you’ll be able to keep track of files by their locations
and filenames. However, if you’re not a careful worker, you may run into situations where you have no
idea what a file contains. You don’t want to view a binary file with cat or another command designed to
view text files, because doing so will probably result in huge amounts of garbage being displayed to
your screen (which may require you to try and relogin your system).

Linux features a command, file, that will look at a file and return specific information about the contents
of the file (most of the time, anyway). The UNIX world of late has supported magic numbers, and in
theory these numbers—found somewhere in the binary file—should match a database of magic numbers
on your system. (These magic numbers can be found in the /etc/magic file.) To run file on a file named
45edfsdwe, you’d use the following command line:

 gilbert:~$ file 45edfsdwe

At the very least, file will tell you the file’s type (executable, ordinary, etc.) and how it’s compiled (such
as dynamically linked). If you’re lucky, the file command will also tell you if the file is related to your
machine. However, if this file is merely text, you’ll see the following information:

 gilbert:~$ file 45edfsdwe

 45edfsdwe text

Copying Files with Cp

The cp command is used to copy existing files. When you use the cp command, the original file is left
intact. This is handy when copying files to another user’s machine (provided you’re networked, of
course) or to another directory for backup purposes. (There are more formal ways to make system
backups on your Linux system, of course, but the cp command works well for single files or small
groups of files.) The following command line copies a file named textfile to the /home/eric directory:

 gilbert:~$ cp textfile /home/eric

When this command is run, the file named textfile will appear in both your home directory and eric’s
home directory.

You may want to give textfile a new name when it’s moved to the new directory. In this case, you’re
giving textfile a new name of textfile.kr when it’s moved to the /home/eric directory:

 gilbert:~$ cp textfile /home/eric/textfile.kr

WARNING: Linux will do exactly what you tell it to do. In some cases, this is a good thing. In
other cases, this is a very bad thing—as can be the case with the cp and mv commands.

If (using the previous command-line example) there were already a file called textfile.kr in the /home/
eric directory, the cp command would overwrite the existing file with the new file. The cp command, by
default, doesn’t check to see if there’s a file already in that directory with the same name. (The same
goes for the mv command; this will be covered in the next section, “Moving and Renaming Files with
mv.”)

On the other hand, both the cp and mv commands have an option (-i) that prevents you from overwriting
existing files, as seen in this command line:

 gilbert:~$ cp -i textfile /home/eric/textfile.kr

 cp: overwrite `textfile.kr'?

If you type y, cp will overwrite the existing textfile.kr. If you type anything else, cp will not overwrite
the file.

Options to the cp command are listed in Table 4.8.

Table 4.8Options to the cp Command

Option Result

-d Maintains a symbolic link as a link rather than as a copy of the original file.

-i Prevents overwriting of existing files with the same filename.

-p Retains the existing permissions.

-r Copies the entire directory structure, including subdirectories.

-v Runs in verbose mode; lists each file as it’s copied.

Copying Directories with Cp

cp also has the power to copy entire directories (including all files and subdirectories), in the form of the
-r option:

 gilbert:~$ cp -r /users/data /users/eric

Previous Table of Contents Next

-->

Previous Table of Contents Next

Moving and Renaming Files with Mv

The mv command is used to move files from one directory to another. This command doesn’t leave a
copy of the original file in the original location (for that, use the cp command); it deletes the original
copy and inserts the new copy in the new location.

The following command line would move the textfile file to the new home (~) location:

 gilbert:/usr$ mv textfile ~

If you were to run the ls, you’d find that textfile didn’t appear in /usr, but was now located in your home
directory.

In this example, textfile retains its current filename, no matter where you move it. You can also use the
mv command to rename a file. (In fact, it’s one of the few ways to actually rename a file, because
there’s no command for doing so within Linux.) The following command changes the textfile filename
to aardvark:

 gilbert:~$ mv textfile aardvark

The following command line would move textfile to a new directory and give it a new filename of
aardvark:

 gilbert:/usr$ mv textfile ~/aardvark

Linux can be fairly harsh when you’re moving and renaming files. For example, the mv command will
overwrite an existing file with a renamed file and not warn you. If you ran the following command line
and a file named aardvark already existed in your home directory, you’d be in trouble:

 gilbert:/usr$ mv textfile ~/aardvark

as mv would overwrite the original aardvark file with the new aardvark file. To avoid this problem,
use the -i option with the mv command:

 gilbert:/usr$ mv -i textfile ~/aardvark

 mv: overwrite 'aardvark'?

Type y if you want to overwrite aardvark, n (or any other key) if you do not.

A summary of the options to mv are listed in Table 4.9.

Table 4.9A Summary of the Mv Command Options

Option Result

-f Overwrites existing file.

-I Checks before overwriting existing files.

Removing Files with Rm

The rm (short for remove) command removes files. Simple enough, right? To remove a file, simply list
it on the command line:

 gilbert:~$ rm aardvark

Aardvark will then be swiftly and painlessly removed—so swiftly that you won’t have a chance to
confirm your choice. However, like the other commands listed in this chapter, you can tell Linux to
confirm your file deletions, in the form of the -i option:

 gilbert:~$ rm -i aardvark

 rm: remove 'aardvark'?

Type y if you want to remove aardvark, n (or any other key) if you do not.

Other options to the rm command are listed in Table 4.10.

Table 4.10Options to the Rm Command

Option Result

-f Removes the file without any input from you.

-i Runs in interactive mode.

-v Runs in verbose mode, which means files are listed as they are removed.

WARNING: Be warned that when you remove a file under Linux, you’re really removing the
file from existence.

If you’re a PC or Macintosh user, you may have gotten spoiled by utilities like The Norton
Utilities, which can “unerase” files that have been erased. At this time, no such utilities exist for
Linux.

WARNING: Be careful when you combine the rm command and wildcards, because a
wildcard—especially an asterisk—in the wrong spot can wreak havoc with your system. For
example, let’s say that you wanted to delete all the files ending with .golf on your system (let’s
say the boss is beginning to be a little suspicious about your afternoon field trips and you want to
remove any incriminating evidence). So you tell Linux to remove all files ending with golf—or
you think you are, anyway:

 gilbert:~/memos$ rm * golf

Disaster ensues. Because you placed a space between the asterisk wildcard and the rest of the
command line, the rm command uses only the asterisk as an argument, ignoring the golf part of
the command line. Since every file is returned by the asterisk wildcard, you’ve just removed all
the files in your current directory. (By the way, the chance of this happening is an excellent
argument for using the -i option at all times and setting it up as an alias.)

Previous Table of Contents Next

-->

Previous Table of Contents Next

Viewing Online-Manual Pages with Man

One of the handiest feature of UNIX—and by extension, of Linux—is the existence of online-manual
pages, which detail the workings of specific commands. These online-manual pages (commonly referred
to as man pages) will list the purpose of a given command, any command-line options, and perhaps
other information. (For example, man pages created by the FSF for use with GNU commands tend to be
rather verbose, going into the entire purpose of the command and listing any known bugs.) While this
sort of information isn’t as useful as a full online help system (for example, you can’t look up a man
page for any topics at all; man pages are written for specific commands), it still can help you a great
deal, especially if you know a certain command can come close to doing what you want, but you need to
know the precise option that yields the desired behavior.

To view an online-manual page, combine the name of the command with the man command:

 gilbert:/$ man man

You’ll then see the information shown in Figure 4.1.

Figure 4.1 The man command in action.

The man page for man is obviously a multipage document, as evidenced by the information at the
bottom of the screen, because the bottom sentence isn’t complete. To move up and down through the
entire man page by entire pages, use the PageUp and PageDown keys; to move up and down the man
page line by line, use the keyboard cursor keys ([uarr] and [darr]). To quit the man command and get a
command prompt, press the q key (short for quit).

NOTE: There’s an X Window equivalent of man, called xman, shown in Figure 4.2. You
should use this command when running XFree86.

file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch04/234-236.html
javascript:displayWindow('images/04-01.jpg',484,394)
javascript:displayWindow('images/04-01.jpg',484,394)

Figure 4.2 The xman command in action.

NOTE: The bash shell contains its own help mechanism, which will be covered later in this
chapter.

Finding Files

The find command included with Linux (actually the GNU find command) is very similar to the find
command that ships with most other versions of UNIX—that is, the GNU version is maddeningly
complex and nonintuitive to use. At its best, find will search your entire filesystem for a specific file. At
its worse, find will return every file on the system, leaving you scratching your head about how to
proceed with a useful search.

Still, you shouldn’t run into too many problems with find if you remember one thing: You need to make
sure all the elements of the command line are properly organized. For example, you won’t find the
following command line very useful:

 gilbert:~$ find *

as it returns all the files in your current directory. Similarly, the following command line will list every
file (at a dizzying speed, no less) on your Linux system:

 gilbert:/$ find *

a move guaranteed to give you a headache. (Remember, Linux does exactly what you tell it to do.)

Instead, you’ll need to slow down and figure out how to use the find command. Let’s say you want to
find the directory location of a file named test.bk. First, you need to tell find how to search for a file.
We know the name of the file, so we begin our command line by telling find to search by filename. We
do so with the -name option:

javascript:displayWindow('images/04-02.jpg',502,406)
javascript:displayWindow('images/04-02.jpg',502,406)

 gilbert:/$ find * -name

This is a start. Now we need to tell find what to look for. We do this by adding the name of the file:

 gilbert:~$ find * -name test.bk

If you wanted, you could use a wildcard instead of listing the specific filename. With or without a
wildcard, however, the command should work.

If you’re working with a large filesystem, you may want to run the find command in the background.
This is accomplished by adding an ampersand to the command line:

 gilbert:~$ find * -name test.bk &

Running this command in the background allows you to do work while the find command searches for
the file. For more information on running commands in the background, check out the section
“Background Commands and Multitasking” later in this chapter.

NOTE: When looking at other Linux texts, you’ll be able to see who actually wrote the book
using Linux and who wrote the book with a knowledge of UNIX and not much experience with
Linux by the way the find command is explained. In most versions of UNIX, the find command
requires that -print be added to the end of the command line and that the name of the search be in
quotation marks. The GNU version of find requires neither.

There’s a lot more to the find command, as it encompasses an amazing amount of complexity that’s
meant for large-scale systems more than for the needs of the average Linux user. If you’re interested in
knowing more about the find command, use the following command line:

 gilbert:~$ man find

Previous Table of Contents Next

file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch04/234-236.html

-->

Previous Table of Contents Next

Chapter 8
Linux Networking

This chapter covers:

• TCP/IP
• System administration and networking
• The fwhois command

Networking and Linux

One of the great appeals of the Linux operating system is its built-in networking connectivity. Instead of
trying to make an operating system like DOS, Microsoft Windows, or MacOS deal with a network, you
can work with Linux, where the network exists at the core of the operating system.

This is accomplished through TCP/IP (Transmission Control Protocol/Internet Protocol), which has
become the lingua franca for networking in the UNIX world. Because UNIX-based systems were
instrumental in forming the Internet and its predecessors, TCP/IP became the dominant protocol for
communication on the Internet. TCP/IP is the major tool for networking UNIX-based computer systems,
as most UNIX implementations contain support for TCP/IP. Other operating systems, such as DOS and
OS/2, can also connect to TCP/IP networks, although this requires special add-on software.

Linux comes with full support for TCP/IP (provided you installed it when you installed Linux; if not,
you’ll need to look at reinstalling Linux or recompiling your kernel). This support comes in the form of
the NET-3 set of protocols and programs. On your end, connecting to a UNIX network via TCP/IP is
merely a matter of making sure your PC is correctly hooked up to the network via Ethernet card and
cabling.

NOTE: Much of what’s involved with Linux networking is best performed at the sysadm level.
If you’re a system administrator, you should follow your own configuration routines at the
network level; after all, Linux installs and configures pretty much like any other PC UNIX on the
network level. If you’re not a system administrator, we suggest you check out Olaf Kirch’s Linux
Network Administrator’s Guide, which can be found on the accompanying CD-ROM or in print at
your local bookstore.

file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch07/392-394.html

In Chapter 1 we covered supported Ethernet cards. If you need more information about setting up your
Ethernet card, check out the ETHERNET-HOWTO on the accompanying program CD-ROM, in the
docs directory.

Linux also allows you to make a TCP/IP connection via telephone line, using the SLIP or PPP protocol.
If you want to connect to the Internet via a dialup connection, you’ll need to use these tools. (We cover
this in more depth in Chapter 9.)

Before you try using any of these tools, you should have some background in TCP/IP. We advise
checking out Olaf Kirch’s Linux Network Administrator’s Guide, which has been printed by various
sources (including the Linux Documentation Project and SSC).

In addition, the CD-ROM contains a very useful, detailed guide to TCP/IP networking and NET-3 in the
form of NET-2-HOWTO, in the docs directory.

These guides should form the basis of your networking expertise. However, we’ll provide a short
overview of TCP/IP networking here.

TCP/IP Basics

Under a TCP/IP network, every computer on the network is assigned an IP address, including your
computer. If your Linux workstation is permanently connected to a TCP/IP network, this address will
remain constant. (If you’re using a dialup connection to the Internet through a service provider, your IP
address will be dynamically assigned when you login the service.) This address comes in four fields,
such as 255.255.0.0. This breaks down to:

subdomain.subdomain.domain.domain

You will find detailed information on IP addresses, how they’re structured, and how you can acquire
them on the second accompanying CD-ROM. We’re not going to spend a lot of time on the intricacies of
IP addresses; it’s an involved subject beyond the reach of this book.

From your end, IP addresses are important for connecting to another computer on the network. (By this,
we mean the entire network, which can include the rest of the world if you’re connected to the Internet.)
However, in many situations you don’t need to know the specific IP address to make a connection, as
you probably discovered when you see lists of Internet addresses (such as those found in Appendix A)
without any IP addresses listed. Why’s that? Because early in the Internet’s development the decision
was made to allow a Domain Name Server (DNS) to handle these dirty details. Your TCP/IP network
(or your service provider) has a named DNS somewhere on the network. When you enter an Internet
address like ftp.x.org or a mail address like reichard@mr.net, a lookup is performed on the DNS,
which then makes sure that the mail or request is routed to the proper machine. If you’ve installed TCP/
IP on your system, you’ll be running a daemon named named that handles the connections to the DNS.

file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch08/ftp.x.org

The fwhois command connects to the DNS and returns information about a specific user or a domain
name:

 gilbert:~$ fwhois mr.net

 Minnesota Regional Network (MR-DOM)

 511 11th Avenue South, Box 212

 Minneapolis, MN 55415

 Domain Name: MR.NET

 Record last updated on 16-Nov-93

 Domain servers in listed order:

 NS.MR.NET 137.192.240.5

 RS0.INTERNIC.NET 198.41.0.5

 RIVERSIDE.MR.NET 137.192.2.5

 SPRUCE.CIC.NET 35.42.1.100

 gilbert:~$ fwhois dfazio@mr.net

 Fazio, Dennis (DF202) dfazio@mr.net

 Minnesota Regional Network (MR-DOM)

 511 11th Avenue South, Box 212

 Minneapolis, MN 55415

 Record last updated on 16-Dec-91

The fwhois command also lists users on your Linux system, even if you’re not connected to the Internet.

Previous Table of Contents Next

file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch07/392-394.html

-->

Previous Table of Contents Next

Setting up TCP/IP Information

The files that control TCP/IP configuration are stored in the /etc directory. When you first set up Linux
and are asked about machine names and domain names, this information is sent to the /etc/hosts file.
While you don’t need to mess with this file if you’re connected to the Internet (it does many of the same
things that a Domain Name Server does), it’s a good thing to place the names of essential servers in this
file. And if you’re not connected to the Internet but you are maintaining a small network, this is the
place to store the IP addresses for the workstations on your system. (Again, this could be done via a
DNS on your local system, but it’s a lot easier to use the /etc/hosts file.)

Another file to check is the /etc/networks file, used to configured different networks in the TCP/IP
subsystem. This file is summoned when the system launches, and its functions are handled by DNS
servers if you’re working on the Internet. Again, if you’re not connected to the Internet but you want to
have subnetworks and such (you really don’t; we’re speaking hypothetically here if you’re working on a
small network), you’d use this file instead of a DNS.

NOTE: If you have an ethernet card, you can configure it using the “netconfig” command. You
might also need to edit /etc/rc.d/rc.modules to load support for your card.

You’ll also want to run the ifconfig command, which essentially tells the kernel about your Ethernet
card and the IP addresses if you’ve not done so already. To see the current state of your system, use the
command with no options:

gilbert:/$ ifconfig

lo Link encap:Local Loopback

 inet addr:127.0.0.1 Bcast:127.255.255.255 Mask:255.0.0.0

 UP BROADCAST LOOPBACK RUNNING MTU:2000 Metric:1

 RX packets:0 errors:0 dropped:0 overrun:0

 TX packets:40 errors:0 dropped:0 overruns:0

In this case, we’re actually using Linux without a network card or a connection to a network—but Linux
thinks it’s on a network using a tool called loopback. Loopback allows applications and daemons that
need to communicate via TCP/IP to connect to local resources.

Summary

Linux networking is an involved subject and one beyond the goals of this book. You’ll want to check out
some of the reference works in Appendix A for more information.

Previous Table of Contents Next

-->

Previous Table of Contents Next

Chapter 9
Linux and the Internet

This chapter covers:

• Linux and the Internet
• SLIP and PPP
• Electronic mail
• The World Wide Web
• Web browsers
• The UUCP commands
• Using FTP
• The telnet command
• Using the Usenet

Getting on the Worldwide Network

The Internet has been the recipient of a ton of hype recently, and with good reason: it’s one of the most
exciting developments in the computer world in quite some time. As both a computer user and a Linux
user, you’ll greatly benefit from the many possibilities offered by the many offerings of the Internet.

As a matter of fact, you’ve probably noticed the many references to the Internet throughout the course of
this book. It seems as though anyone who wants to do any advanced work with Linux needs a link to the
Internet. (As did the authors of this book, who spent much of their time planning this book and
coordinating material through electronic mail and the Internet.) Usenet newsgroups—which we cover in
Appendix A—as well as great Web sites can certainly enhance your understanding and usage of the
Linux operating system.

How you connect to the Internet depends on your specific circumstances, however. If you’re using
Linux in a corporation that’s already connected to the Internet, you can merely piggyback from that
connection. If you’re working on a stand alone Linux workstation, you can set up your own Internet
connection with the aid of an Internet service provider.

Both of these possibilities exist because of Linux’s built-in networking capabilities—namely, TCP/IP,
which you learned about in Chapter 8. Basically, this support for TCP/IP allows a Linux user to use
another computer on the network. In Chapter 8, the computers on the network were in the same physical
location as your computer. On the Internet, the computers on the network can be just about anywhere.

(In other words, the Internet is basically the world’s largest TCP/IP network.)

The concept behind TCP/IP networking is actually pretty simple. Each machine on the network has an
individual TCP/IP address, and every other machine on the network can access this machine (if only to
be denied access, of course; there are some security measures involved if need be). The extent of the
network depends on your needs; some companies purposely restrict their TCP/IP networks to a very
confined set of machines; other allow full access to the global Internet.

In this chapter, we’ll discuss getting on the Internet using the tools built into Linux.

Finding a Window to the Internet

If you aren’t connected to the Internet via a direct network connection, you’ll need to make
arrangements to do so. There are two ways to do this.

One method involves piggybacking off of a machine that is directly connected to the Internet. In this
manner, you can essentially use the specifics of the connected machine. Connectivity tools that fall
under this category include SLiRP, which is run in a remote UNIX shell account and makes it act like a
SLIP/CSLIP account. We compiled it on an Ultrix machine and connected to it with DIP. It works great!
The source for it is on the CD-ROM in /contrib.

NOTE: The term program, which was covered in the first edition of this book, is no longer
supported under newer versions of Linux.

Linux’s SLIP and PPP Tools

If you don’t have a permanent TCP/IP connection to the Internet through work or a friend, you can use
Linux’s SLIP and PPP tools to connect to the Internet via an Internet service provider of some sort. SLIP
(Serial Line Internet Protocol) and PPP (Point-to-Point Protocol) allow you to connect to another TCP/
IP machine.

To connect to the Internet via SLIP and PPP, your implementation of Linux must first support both
protocols. If you installed directly from the CD-ROM, your Linux kernel will indeed support SLIP and
PPP; if you look at the screen closely when you boot Linux, you’ll notice that SLIP and PPP will be
listed. However, if for some reason you decided to compile your own kernel, then you should have had
the foresight to compile in SLIP and PPP support. (You were asked if you wanted support for these
protocols as part of the make process.) If not, then you’ll need to go back and compile a new kernel,
paying special attention to the Network section of the makefile.

After doing that, you’ll set up an account with a service provider (like Netcom, PSI, GNN, Microsoft

Network, or Minnesota Regional Network), which gives you Internet access using a standard modem.
When you connect via a service provider, you’ll be assigned an IP address right on the spot; the process
yields a dynamically assigned IP address, which is then used by your Linux system to connect to the
Internet.

When you set up an account, you should get a list of information from the service provider. Out of this
information, you’ll need to know the following:

• The access telephone number—if you don’t have this number, you can’t dial up the service
provider.
• The IP numbers of the Domain Name Servers. These are the servers your system looks to when
you want to connect to another machine on the Internet. Without these servers, your Linux
system would be lost in cyberspace.
• Your username and password.
• The mechanism for logging on the system. This is a little more daunting than it looks, because
it seems that every service provider handles dialup connections a little differently. As an
example: our service provider uses a standard UNIX-style login procedure, where the entry of a
username and a password is followed by a standard UNIX prompt:

 Welcome to the Twin Cities MRNet dialIP Service.

 User Access Verification

 Username:

 Password:

 slip-server> ppp

After entering ppp at the command prompt, the server initiates the PPP protocol with your
machine. This is not standard in the ISP world; most initiate the process immediately after you
enter your password.

Basically, SLIP and PPP do the same thing. However, SLIP (the older of the two protocols) is
decreasing in popularity, because PPP (quite honestly) is easier to configure and use. Linux contains the
dip command, which handles SLIP connections to a service provider.

Previous Table of Contents Next

-->

Previous Table of Contents Next

The dip command stands for dialup IP connections, that is, a TCP/IP connection between your Linux
system and some other system. The connection is made over a serial line (and presumably a phone line
and modem) instead of the traditional Ethernet or other TCP/IP connection. On top of the serial line
connection, dip implements one of a number of serial-line Internet protocols, including SLIP, CSLIP
(Compressed SLIP), and PPP.

Thus, without a direct hard-wired network link, you can establish an IP (network) link over a phone line.
This is very useful for connecting to an Internet service provider. The way this works is that all data
going between the two computers is sent over the serial line. At each end, the data is converted into
network packets and sent to the appropriate programs. To most programs on either end, there is no real
difference between this type of link and a direct network connection, except that serial-line links are
typically much slower than direct network connections.

You can use dip for both incoming and outgoing dialup links.

When you dial out with dip, you can configure a chat script to set up a link to your remote system. The
chat script contains things like which serial port to use, the system (host) to connect to, what speed to set
the modem, the protocol (e.g., PPP, SLIP, etc.), and so on.

You can also use dip to manage incoming connections. Users then login normally over a serial link, but
the “shell” launched on login is not bash or csh, but diplogin.

In this case, you can set up a program called diplogin as the “shell” to execute for a particular user in
the /etc/passwd file. (Normally, diplogin is a link to dip with the -i option to set dip into input mode.
Upon login, dip looks up the user’s name in the /etc/diphosts file. Each entry in this file is a lot like the
system password file, /etc/passwd. For each user, you can have an extra external dial-in password to add
an extra level of security—a useful thing in the wild atmosphere of the Internet.

Upon successful login, dip sets up a network connection between the dial-in line and your Linux system,
using the protocol specified in the /etc/diphosts file for the given user who logged in. Normally, this is
CLSIP, SLIP, or PPP.

NOTE: Dip also supports dynamic IP address allocation. See the online documentation for more
on this.

Because dialup Internet connections are so individualistic (we’ve dealt collectively with both static and

dynamically allocated addresses), we’re going to leave it up to you to configure dip. You’ll want to read
carefully through the online-manual pages for dip, as they contain plenty of examples. They also contain
example scripts, which you can adapt to automatically log you on a remote connection.

To help make the first connection, it’s very handy to run dip in test mode. To run it, use the following
command line:

 gilbert:/$ dip -t

 dip>

The -t option tells dip to accept interactive commands. You can use these interactive commands to find
out more information about what steps work and what steps don’t while you’re debugging a dip
connection.

Unfortunately, there is no really easy way to set up dip. You can find out more about dip and its
configuration options by looking in the /usr/doc/dip directory.

Linux’s PPP Tools

We recommend that you use the PPP protocol instead of SLIP for many reasons, some technical and
some not; basically, it’s easier to set up PPP connections when you’re using dynamically assigned IP
addresses.

Not that it’s that simple to set up a PPP connection. The trouble with the Linux world is that it lacks a
simple tool like Trumpet Winsock to automate dialup connections to the Internet, which is why you need
to slog through descriptions like the one here.

In addition to the dip program, Linux supports a suite of PPP-only applications. The dip program
supports the PPP protocol, along with SLIP and CLSIP. The PPP suite of applications only supports
PPP. Of these PPP-only tools, the pppd command acts as the PPP daemon and sits in the background
awaiting PPP connections.

The ppp-on command brings up a connection. The ppp-off command brings it down. As with dip,
there’s a lot of configuration to do. This is one area of Linux that could really use some improvement.
You can find out more about Linux’s PPP tools by looking in the /usr/doc/ppp directory.

NOTE: Confusing as it sounds, the dip program supports the PPP protocol, but not the separate
PPP suite of commands. Nor do the PPP commands support dip. That is, you can’t really mix and
match dip with ppp-on, ppp-off, and pppd.

In addition to the slip and ppp suites, you can run diald, short for Dial Daemon. Diald maintains a
pseudo-networking connection for your phone line, even if the phone line is not actively connected to
the Internet. This capability allows you to only tie up your phone line when needed, because diald
automatically reconnects when needed and hangs up when a connection is no longer necessary.

ON THE CD-ROMS: Diald is on the second CD-ROM.

Previous Table of Contents Next

-->

Previous Table of Contents Next

Setting up a PPP Connection

Here are the steps you’ll want to follow to establish a PPP connection to an Internet Service Provider, or
ISP. In these situations, you’re calling the same phone number and are dynamically allocated an IP
address each time you login the ISP’s computer.

First, you’ll need to make sure that your local permissions are set up correctly. When logged in as root,
you should edit your /etc/hosts.deny file to add the following line:

 ALL: ALL

This prevents others from logging on your system via the Internet when you’re connected to your ISP.
However, you do want to allow yourself access to your own machine (we assume you do, anyway), so
edit your /etc/hosts.allow file to add the following line:

 ALL: 127.0.0.1

If you haven’t done so already, you should give your own machine a name (we told how to change this
in Chapter 2). This information is found in /etc/HOSTNAME.

Next, you’ll need to tell your Linux system where to find data on the Internet. This involves adding the
name of your service provider and a DNS server to the /etc/resolv.conf file, in the following format:

 search mr.net

 nameserver xxx.xxx.xxx.xxx

In this example, we told Linux to look for things like news and mail at mr.net. In the place of xxx.xxx.xxx.
xxx you’ll provide a DNS address as provided by your ISP.

You’ll also want to take a look at /etc/hosts. It should contain two lines, looking something like this:

 127.0.0.1 localhost

 0.0.0.0 gilbert

If 127.0.0.1 is used for your machine name, change it. This should not be used when a connection to the
Internet is made, because it may conflict with some Internet services.

Finally, you’ll want to give Linux the username and password provided to you by your ISP in the /etc/
ppp/pap-secrets file. This line will look something like this:

 reichard * password

where password is the password.

One more step before you make a connection: You’ll need to create a /etc/ppp/chatscript to include
information about your ISP, particularly a phone number. The following script works with most modems:

 TIMEOUT 5

 '' ATZ

 OK ATDTxxx-xxxx

 ABORT 'NO CARRIER'

 ABORT BUSY

 ABORT 'NO DIALTONE'

 ABORT WAITING

 TIMEOUT 45

 CONNECT "We are connected!"

 TIMEOUT 5

 "name:" reichard@mr.net

 "word:" password

 in> ppp

where xxx-xxxx is the phone number of your ISP. The final three lines are tailored to our ISP, which
presents two prompts (username: and password:) as well as a command line for launching ppp on the
host computer. You’ll want to change this for your specific ISP.

Once connected, you should be able to use any of the Internet tools presented here.

Internet Tools

After you work out your connections to the Internet, you can take advantage of the network tools
available under Linux.

We’ll begin with a discussion of Internet mail, then we’ll discuss other Internet goodies.

Using Electronic Mail

The ability to send electronic messages to individuals, groups of people, or everyone in the company is
not one of the flashiest features of the Linux operating system, but it is certainly one of the most used.
Other networking systems, particularly from the MS-DOS world (like Novell NetWare) lack basic
electronic-mail (or e-mail) capabilities, while other operating systems featuring built-in electronic mail
lack the other extensive capabilities featured in Linux.

The mail program has been an important part of UNIX almost since the very beginning. As UNIX
evolved, so has mail—to an extent. The actual electronic-mail mechanisms are similar to the original
mail mechanisms; changes mainly concern how a user interacts with a mail program. The procedures
described here may not appear exactly the same on your system, as there are many mail programs, both
UNIX- and X Window-based, that vary in how they present information to the user.

Linux gives you a few options for reading and sending mail, starting with the mailx command and
ending with programs like elm and pine, which ship on the accompanying CD-ROMs.

Previous Table of Contents Next

-->

Previous Table of Contents Next

Receiving Mail

Linux informs you of incoming mail when you login the system. You’ll see a message like:

 You have mail.

Unless you read your mail at this point, this message will reappear periodically, as the shell is
automatically set up to remind you of unread mail.

To view this mail, type:

 gilbert:/$ mail

You’ll see something like what’s shown in Figure 9.1.

Figure 9.1 Incoming mail.

The shell responds with a list of your mail messages, listed in the order they were received by your
system, newest mail first. The first field lists the sender of the message, the second through fifth fields
denote the time and date the message was received, the sixth field records the number of lines in the
message and the size of the message (in bytes), and the final field indicates the subject of the message.

Press Enter to read the first message on the list. If it’s a long message, the entire message will scroll by.
If you want to stop scrolling the message, type Ctrl-S; to start it again, type Ctrl-Q.

There are two types of messages waiting for us: messages from root and messages from volkerdi@mhd1.
moorhead. If you’re connected to the Internet and have your own network with other users, your
electronic mail can come from two sources: your own system and other systems. Mail from other
systems, sent on the Internet or the Usenet, has its own unique addressing scheme (more on that in the

javascript:displayWindow('images/09-01.jpg',579,340)
javascript:displayWindow('images/09-01.jpg',579,340)

next section). Mail from your own system uses the same login names as described in Chapter 1; these
names are contained in the /etc/passwd file.

The newer addressing scheme, and one that is growing in popularity (mainly because of the growing
popularity of the Internet), is called domain addressing. Structured as the exact opposite of a bang path,
a domain address couples the name of the user with an address. This scheme grew out of the need for
international standardization of electronic-mail addresses and provides a hierarchical structure to
addressing. Essentially, the world is split into country domains, which are divided into educational
domains (indicated by the suffix .edu in the address) and commercial domains (indicated by the suffix .
com in the address). There are hundreds and hundreds of commercial and educational domains, and the
number is growing every day.

Reading a domain address is quite simple. In the address of:

reichard@mr.net

reichard refers to the user, while mr.net refers to the domain. The user and domain names are separated
by the at (c) symbol. As a user, you don’t need to know the specific path a message must take, nor do
you need to know the name of a gateway. With a domain address, sending a message is simple:

 gilbert:/$ mail reichard@mr.net

The idea of the Internet is fairly amorphous and abstract. The Internet is technically a collection of many
networks that somehow manage to talk to each other. As a user, all you need to know is a recipient’s
electronic-mail address; the system administrator handles the basic details of linking a system to the
Internet.

If you’re on the Internet, you can also receive electronic-mail from afar. To find your machine address,
type uname -n at the prompt:

 gilbert:/$ uname -n

 gilbert

where gilbert is the name of your UNIX system, also called the hostname. To list all the systems you can
directly communicate with, type uname:

 gilbert:/$ uname

 othersystem1

 othersystem2

 othersystem3

where othersystem refers to the other systems.

The uname command doesn’t support this option on all systems. If this is the case, you can look in the
file /etc/hosts covered earlier in this chapter, to get a good idea of what other systems your computer
networks with.

In a large regional or nationwide network, the list of other systems can be quite large. If you want to find
a specific system and you don’t want to wade through a huge list of names, use uname in conjunction
with grep:

 $ uname | grep othersystem121

 othersystem121

If the name of the other system is returned, you can send electronic mail to someone with an account on
that system. In addition, you can send messages to people on the Internet if you are connected to the
Internet, provided you know the exact address of the recipient.

Let’s look at the first message from root, shown in Figure 9.2.

Figure 9.2 An incoming electronic-mail message.

At the beginning of an e-mail message is a header. With the Internet, mail may go between one or more
systems on its way to you. You can’t count on a direct link between systems, and because of these
uncontrollable paths it may take some time for a message to reach the recipient; delivery times of 15
hours to 24 hours are not uncommon, but neither are delivery times of 10 seconds.

javascript:displayWindow('images/09-02.jpg',582,368)
javascript:displayWindow('images/09-02.jpg',582,368)

Creating Mail

It’s very easy to create mail. (Too easy, some would say, as they survey mailboxes full of irrelevant mail
messages.) To create a short message at the keyboard, simple combine mail with the name of the
recipient, followed by a period on its own line. The resulting mail is shown in Figure 9.3.

Figure 9.3 Incoming mail.

As always, end input from the keyboard by typing Ctrl-D. Some e-mail programs also accept a single
period on its own line to terminate the message, instead of Ctrl-D. The procedure would be the same if
you were sending a message to a user on a remote machine:

 gilbert:/$ mail reichard@mr.net

You can send the same message to multiple users with the -t option:

 gilbert:/$ mail -t johnsone@camax.com reichard@mr.net

 This, too, is a test.

 .

The resulting message will contain multiple To: fields in the header.

Sending an existing file as the text of an electronic-mail message is almost as simple. After creating an
ASCII file using vi or emacs, save the file and then redirect it as input on the command line:

 gilbert:/$ mail johnsone@camax.com < note

Previous Table of Contents Next

javascript:displayWindow('images/09-03.jpg',582,368)
javascript:displayWindow('images/09-03.jpg',582,368)

-->

Previous Table of Contents Next

What Do I Do with My Messages?

After you read a message, the shell presents you with a different prompt:

 &

asking for a response related to the mail program. There are many actions you can take at this point; the
handiest options are listed in Table 9.1.

Table 9.1A Selection of Mail Commands

Command Result

Return Prints next message.

- Prints previous message.

d Deletes current message.

dN Deletes message N.

dp Deletes current message and goes to the next message.

dq Deletes current message and quit.

u N Undeletes message N.

s filename Saves message to filename; if filename is not specified, message is saved to
$HOME/mbox.

w filename Saves message without header information to filename; if filename is not
specified, message is saved to $HOME/mbox.

? Lists mail commands.

Saving Messages

As we saw in Table 9.1, saving a message is simply a matter of typing:

 ? s filename

If you don’t get many messages, it’s no big deal to save them all to the same file. But if you get a lot of
messages on many topics, it’s a good idea to introduce some organization to your mail habits.

Let’s say you’re working on a project with user erc, and you want to keep all of his mail messages in the
same file. You do so with the s option at the ? prompt:

 ? s erc

where erc is the name of the file containing his mail messages. When you do this the first time, the shell
creates a file named erc. Subsequent uses will append mail messages to the existing erc file.

To read this file, use mail with the -f option:

 gilbert:/$ mail -f erc

Don’t make the mistake of assuming your electronic mail messages are private. Because mail messages
normally appear in unencrypted text files, anyone with superuser privileges, such as your system
administrator, can read your mail.

Few businesses have policies regarding the privacy of electronic mail communications. When in doubt,
assume that your boss can read your mail.

Other Mail Packages

As you can tell, mail sports an exceedingly primitive interface. Over the years, a crop of new mail
programs have appeared, some commercial software and some free, each of which aims at making life
easier for the user. Some of the free ones are included with Linux.

Xmh is an X Window front end to mh, as shown in Figure 9.4.

javascript:displayWindow('images/09-04.jpg',512,406)

Figure 9.4 Xmh in action.

Pine is another popular electronic-mail program, shown in Figure 9.5.

Figure 9.5 Pine in action.

Finally, there’s elm, which is one of our favorites. Elm stands for electronic mail and it works by
providing an easy-to-use interface over the standard mail program.

The basic elm screen looks like that shown in Figure 9.6.

Figure 9.6 The elm mail program.

You can use the arrow keys on your keyboard to select a message. Pressing Return reads the message.
Elm is so simple, fast and easy that we think you’ll soon be a convert. The online help, available by
typing a question mark (?), should get you going in no time. (Like many users, we’re often too busy to
read the manual. In fact, we’ve never read the elm manual—the program is that easy.)

If you’ve been observant, you’ve noticed that all the programs shown in this section work from the same
mail file. This is no accident; to prevent multiple mail files from popping up all over your Linux system
(as well as the entire UNIX system, if you’re networked), the mail packages work from the same
incoming-mail file.

Linux also supports a series of commands that allow MIME attachments to mail messages, which is a
very popular way to attach files to mail messages in a manner that almost any other Internet e-mail user
can understand.

Previous Table of Contents Next

javascript:displayWindow('images/09-04.jpg',512,406)
javascript:displayWindow('images/09-05.jpg',582,368)
javascript:displayWindow('images/09-05.jpg',582,368)
javascript:displayWindow('images/09-06.jpg',582,368)
javascript:displayWindow('images/09-06.jpg',582,368)

-->

Previous Table of Contents Next

Using a Web Browser

Electronic mail, of course, is a rather unglamorous function of the Internet. Most of the hoopla
surrounding the Internet concerns Web pages, accessed via Web browsers. To understand these terms, a
little background is in order.

By the end of the 1980s, most of the infrastructure that was to become the Internet was already in
place—primarily, the nationwide linkage of computers that could almost instantaneously access other
computers on the network. Before that, things like mail and newsgroups were passed along from
computer to computer (mostly overnight, when phone rates were lower). When the Internet finally took
shape, it became possible to access any other internetworked computer directly.

Armed with these capabilities, CERN researchers, lead by Tim Berners-Lee (now head of the WWW
Consortium at MIT), developed an information-exchange structure called the World Wide Web, which
would take advantage of these instantaneous links. A computer on the Internet has a distinct address, and
a piece of software (called a Web browser) would use that address for instant connectivity. Pages on that
internetworked machine are formatted in the HyperText Markup Language, or HTML (itself a subset of
the complex Standard Generalized Markup Language, or SGML). This formatting would specify things
like headlines, body text, and hypertext links to other Web resources.

It’s up to the local Web browser to actually render this Web page on the local computer. For example,
the Web browser will contain a tag for a headline; the Web browser uses a local font to create this
headline. The same goes for body copy and hypertext links.

Popular Web Browsers

Mosaic from NCSA was the first popular Web browser, and for many users it still epitomizes the power
of the Internet. Of late, however, Netscape Navigator has garnered a lot of attention as being the cutting-
edge Web browser.

We’re not going to play favorites here; you need to go out and grab whichever Web browser you want.
We’ll use Netscape Navigator in our examples, but there’s nothing that wouldn’t apply equally to NCSA
Mosaic. In fact, there’s a whole list of freeware Web browsers that have been compiled for use under
Linux; you can grab them via FTP (which we’ll describe later in this chapter); we’ve included the
noncommercial ones on the second CD-ROM. They include:

• Mosaic (which has been compiled for Linux in several different versions; you’ll want to check

them out before committing to the download time, which can be considerable); you can grab the
latest version at ftp://ftp.NCSA.uiuc.edu/Web/Mosaic/Unix/binaries/
• Netscape Navigator (check out http://home.netscape.com for more information)
• Lynx (a freeware text-only browser)
• Arena, a freeware Web browser from the WWW Consortium at MIT
• tkWWW (a freeware Web browser written in Tcl/Tk)
• SurfIt! (another freeware Web browser written in Tcl/Tk)
• Chimera (a freeware browser)

By and large, the World Wide Web is a graphical beast; most of these Web browsers (the big exception
is Lynx) run under the X Window System.

Page Limits

At its core, the World Wide Web is actually an ingeniously simple thing. A Web browser, such as
Mosaic or Netscape, sends a request over the network to a Web server; the request can be in one of five
formats (as listed in Table 9.2 later in this chapter). The server then honors the request by sending a text
file formatted in the HyperText Markup Language (HTML), which inserts tags in the text. The text file
is then rendered by the local Web browser, which matches the tags to resources on the local
machine—for example, a tag for TITLE would be rendered in a font and point size set up through the
Web browser.

Table 9.2URL Formats and Their Meanings, from the WWW FAQ

Format Represents

file://ftp.microsoft.com File at an ftp site

ftp://wuarchive.wustl.edu/mirrors FTP site

http://info.cern.ch:80/default.html WWW site

news:alt.hypertext Usenet newsgroup

telnet://dra.com Telnet connection to Internet-connected server

The HTML language also allows graphics and hypertext links to be embedded in the document. Most
graphics files are in the GIF and XBM file formats. The hyperlinks are noted with their own tags and are
usually set in a different color within the rendered document. For example, under a heading titled Other
Resources, there may be a line colored blue that says Sun Microsystems Home Page. To the Web
browser, however, there’s an embedded Web address (in this case, www.sun.com). Double-clicking on
Sun Microsystems Home Page initiates a request to the Web server www.sun.com. You don’t need to
know the www.sun.com address; you only need to know how to use a mouse.

ftp://ftp.ncsa.uiuc.edu/web/mosaic/unix/binaries/
http://home.netscape.com/
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch09/ftp.microsoft.com
ftp://wuarchive.wustl.edu/mirrors
http://info.cern.ch/default.html
telnet://dra.com/
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch09/www.sun.com
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch09/www.sun.com
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch09/www.sun.com

You can start Netscape with the following command in an xterm window:

 gilbert:/$ netscape &

When Netscape launches, it connects directly to a Netscape Communications home page (home.netscape.
com). (By the way, this is a good way to test if Netscape is configured properly; if you or your system
administrator has misinstalled Netscape, it will report that a connection to home.netscape.com has
failed.)

Chances are pretty good that you won’t want to spend much time wandering around the Netscape Home
Page. The beauty of the World Wide Web is that it allows you to jump from Web site to Web site, either
those linked to your current page or a page totally unrelated.

Previous Table of Contents Next

-->

Previous Table of Contents Next

A page on the World Wide Web is formatted in the HyperText Markup Language. If you were to view
the document in text mode—which is possible with many Web browsers, including Netscape—you’d
see that the text is scattered with “tags,” like <H2>. There’s no mentions of point sizes, colors, or the
like. The beginning of an HTML file looks like this:

 <TITLE>Netscape Handbook: Graphical Elements</TITLE>

 Graphical elements

 Netscape Handbook: Table of

 Contents

 Netscape window

 Point and click navigation

 Content area and text fields

 Security information

 Window controls

 Toolbar buttons

 Directory buttons

 Newsgroup list buttons

 Newsgroup article buttons

 <HR ALIGN="right"WIDTH=85%>

 Netscape window

 <P>

 This section on graphical elements describes what you see in the

 Netscape window. Most of the tools and text fields that help you to

 navigate the Internet are visible, though you have the option of
hiding

 some tools in order to give more space on the screen to the content

 area.<p>

 On the page describing point and click navigation, you'll find a

 description of each type of graphical element: colors/underlining,

 status indicator, progress bar, toolbar buttons, content/text
fields,

 window controls, and menus. Subsequent pages go into more detail on
how

 toolbar buttons, text/content fields, and window controls work. An

 entire section of pages is devoted to menu items, including those
that

 let you set important options and preferences effecting the look,

 performance, and functionality of the Netscape window.<p>

 You can open multiple Netscape windows to view multiple pages of

 information. The title bar of the window shows the title of
currently

 loaded page. <P>

 <HR ALIGN="right"WIDTH=85%>

 Point and click navigation

 <P>

The work of rendering the home page is done at the local level, matching local resources to the
specifications of the Web page. You’ll notice that there are a few different point sizes and typefaces on
the home page. The Web document makes a reference to <TITLE>; the Web page then matches a local
font and point size to the text.

A graphic is also rendered locally. When the document downloads, the graphic is sent separately, in the
GIF format, which makes for quicker file transfers. (Even so, some GIF documents can be very large
and take a long time to download, even at a high-speed network link.)

URL Formats

You tell a Web browser where to look by entering a Uniform Resource Locator, or URL. The WWW
community has standardized on a number of URL formats, as listed in Table 9.2.

This means that you can connect to many Internet resources via a Web browser. Most Web browsers
have a menu selection or dialog box that allows you to enter a URL.

Communications with the UUCP Commands

In many respects, the Internet is the “new wave” of UNIX communications. However, there are many
UNIX and Linux users who might want to take advantage of other communications methods.

One older method is UUCP. Originally, UNIX-to-UNIX Copy Program (UUCP) was written to
communicate between systems via ordinary telephone lines. The UUCP program allows you to copy
files from one system to another. Today, these connections can take place between those same telephone
lines via modem (at all speeds, from 2400 bits per second to 19.2 kbps), direct wiring, a local-area
network, or a wide-area network connected via dedicated phone lines. Although the connection
mechanisms have changed, the basic UUCP system has not; it remains mechanism-independent, which
makes your life much simpler. As a user, you don’t need to know the specifics of the connection
mechanism; all you need to know is how to access the utilities that make communication possible.

Dealing with UUCP and the networking utilities on a configuration level is an advanced topic best left to
system administrators and those with iron stomachs, suitable for dealing with the complex task of
networking Linux machines.

There’s no one great überprogram that oversees Linux connections to the outside world. Much like
everything else in the Linux and UNIX worlds, the communications utilities are quite small and serve
limited purposes by themselves; only when strung together do they actually make up a powerful
communications system.

Why connect to the outside world? Some companies directly link far-flung offices via dedicated phone
line to ensure instantaneous communication among employees. Others connect via modem over phone
lines to the UUCP Network, a series of UNIX computers that pass along electronic mail and files all
around the world.

In a rather confusing situation, UUCP refers both to a specific command (uucp) and a series of related
commands (most of which begin with uu). In this chapter, uucp will refer to the specific uucp command,
while UUCP will refer to the general command set.

To make things even more confusing, there’s more than one implementation of the UUCP utilities on the
market. In this chapter, we’ll be covering the HoneyDanBer UUCP, named for its three creators (Peter
Honeyman, Dan A. Nowitz, and Brian E. Redman). This implementation is supported in the version of
Linux on the accompanying program CD-ROM.

Previous Table of Contents Next

-->

Previous Table of Contents Next

A UUCP Primer

At its core, the UUCP commands allow machines to communicate directly via network links or
telephone connections. They are limited in scope and are geared toward the rudimentary purposes of
sending along files, electronic mail, and (sometimes) Usenet news.

In this chapter, we’ll focus on the few commands you’re likely to use. (If you want information about all
of the UUCP commands, check Appendix A for a list of further reading material.) We’ll also avoid
configuration issues, which are best left to a system administrator.

Before you use uucp, you need to know what machines are connected to yours. The uuname command
does just this:

 gilbert:/$ uuname

 geisha

 spike

Why is this information important? Because you’ll need to specify machine names with the uucp
command.

Using UUCP

The uucp command is used to copy files from one machine to another. At first glance, in this age of
Internet and the Information Superhighway, you may think that this is incredibly retro technology. And,
conceptually, it is.

Realistically, however, the uucp command has its widest application in the corporate world, where
interconnected computers are very common. In these situations, the corporate systems may not be tied to
the outside world but only connected to other corporate systems. In these cases, the uucp command is a
handy way of transferring a file from your system to the corporate headquarters in Sioux City, Iowa.

The best way to understand the uucp command isn’t to think of it as a strange and unfamiliar
networking command—just think of it as an extended version of the common cp command, which you

used earlier in this book. Instead of downloading and uploading files from a local directory, you’re using
uucp to download and upload files from another machine.

There’s an added advantage to the uucp command: All in all, it’s a rather secure method of transferring
files, when everything is set up correctly. (There’s the issue of security popping up again.) The uucp
command and the UUCP utilities can enact very specific guidelines on where files can be uploaded to or
downloaded from.

Let’s look at a typical uucp command line:

 $ uucp chap9.txt spike!/usr/spool/uucppublic/chap9.txt

While this may seem to be a long command line, a closer look will show that it’s actually rather simple.

The uucp portion of the command line, obviously, refers to the uucp command. This is followed by the
name of the file to be copied (chap9.txt).

The next portion is potentially the most confusing portion for novice users, as it represents the
destination of the file by name of the machine and the directory. In this case, spike refers to the name of
the machine; the uucp command knows this because the name of the machine ends with an exclamation
mark (!).

If the exclamation mark looks familiar, it should; remember, the Usenet method of electronic-mail
addressing with bang paths makes heavy use of exclamation marks.

The exclamation mark is immediately followed by the destination directory. The usr/spool/uucppublic
directory is a common destination for UUCP sites.

Please be aware that none of the machine names in this chapter are real. Don’t use these specific
examples on your own system.

Generically, the uucp command would look like this:

 gilbert:/$ uucp sourcefile destinationfile

The uucp command can also be used to grab files from another machine, as long as you have the proper
permissions (again, a configuration issue that we’ll duck). In this case, you’ll alter the uucp command
line used earlier in this chapter. The principle is the same: use the uucp command to list the source file

and then its destination. In this case, the remote file is the source file and a local directory is the
destination:

 gilbert:/$ uucp spike!/usr/spool/uucppublic/chap9.txt\

 /usr/spool/uucppublic

When using the uucp command to download a file, all you need to do is specify the destination
directory; the command assumes that the filename will remain the same and that the destination
directory exists on your local machine.

Potential Problems with the Uucp Command

As many frustrated users can attest to, the uucp command and the greater UUCP command set are not
foolproof. Perhaps the greatest frustration is that the uucp command isn’t interactive, and there’s no way
to monitor the status of a file transfer. You can tell uucp to send you a receipt via electronic mail when
the file transfer is completed:

 gilbert:/$ uucp -m chap9.txt spike!/usr/spool/uucppublic/chap9.txt

However, if you don’t receive the electronic mail confirmation, you can assume that the transfer has
failed. Finding out why, however, isn’t an easy task.

It is made somewhat easier, however, by the presence of a logfile that uucp maintains as part of the
transfer process. To get at this file, use the uulog command:

 $ uulog

This will provide a lot of output—probably too much for your troubleshooting purposes. It’s probably
better if you combine the uulog with the name of a machine:

 $ uulog -sspike

Yes, -sspike is correct. In an oddity, the -s option to uulog must be immediately followed by the name of

the machine (in this case, spike).

You’ll then need to read through the arcane information from uulog and try to make some sense of it.
Successful file transfers will end with REMOTE REQUESTED or OK.

What Can Go Wrong?

When a uucp connection fails, there are can be many potential culprits. The uulog command can be
handy to discover that a connection was denied by the remote system (something like ACCESS DENIED
will appear in the logfile). In this case, the login name or the password required by the remote machine
may have been changed; this is a task for the system administrator to tackle.

If this isn’t the case and ACCESS DENIED still appears in the logfile, it could be a simple case of a
mistyped command line. If you type the wrong filename or directory, the connection will succeed, but
the transfer will fail. Again, by a careful read of the logfile, you can determine this.

Your transfer may also be the victim of your own impatience. Not all uucp requests are instantaneous;
many system administrators choose to queue requests and make the transfers after hour, when
longdistance rates are cheaper.

Previous Table of Contents Next

-->

Previous Table of Contents Next

Free Software and FTP

Linux also features ftp, a command that allows you to link directly to another computer using the
network TCP/IP. Essentially, if you have a TCP/IP connection to the Internet, you can use ftp to connect
to any public site on the Net. In this section, we’ll guide you through an FTP session.

Using FTP

The ftp command can be used to connect to any other computer on your network running ftp. If your
system is connected to the Internet, you can use ftp to access files from other Internet computers
worldwide. The machines with which you network may or may not be running the UNIX or Linux
operating systems; this operating-system independence is what makes FTP so widely used.

FTP is interactive software, which means it asks for information at specific times. Start it with the
following:

 gilbert:/$ ftp

 ftp>

You’ll be presented with the ftp prompt, where you enter special ftp commands. To get a list of
available commands, type a question mark (?) or help at the prompt:

 ftp> ?

 or

 ftp> help

A list of the most common FTP commands is contained in Table 9.3.

Table 9.3Common FTP Commands

Command Result

ascii Use ASCII as the file-transfer type.

bell Ring the bell when file transfer is complete.

binary Use binary as the file-transfer type.

bye or quit Terminate ftp session.

cd Change directory on the remote machine.

close End ftp connection to remote computer but keep local ftp program
running.

delete filename Delete filename on remote computer.

get filename Get filename from the remote machine.

get filename1 filename2 Get filename1 from the remote machine and save it locally as
filename2.

help List available commands.

mput filename Copy the local filename to the remote machine.

pwd List the current directory on the remote machine.

It’s simple to download files from a remote machine with ftp. Let’s say we want to grab some files from
the machine named mn.kevin.com. (No, this isn’t a real machine.) Assuming that this is a machine on
the Internet that supports anonymous FTP—and our fictional machine does, of course—you would
merely specify its name on the command line:

 gilbert:/$ ftp mn.kevin.com

If the connection goes through, you’ll receive a verification message, along with a login prompt.
Because this is anonymous FTP, use anonymous as a login name:

 Name: anonymous

You’ll then be asked for a password. Some systems require you to supply your electronic-mail address,
while others require guest. Use either. You’ll then be presented with an ftp prompt.

The remote system has been set up to give you limited access, which means that your maneuverability is
very limited and the files you want are usually close at hand. If you need to change to another directory,
do so with the UNIX cd command.

Before embarking on the great file quest, you should know something about the files you’re
downloading. If they are straight C files in uncompressed, ASCII form, you can download them using
the default file-transfer settings. Most larger files, especially binary files, are stored in compressed form
so they take less time to transfer.

These compressed files end with .Z, .z, .tgz, .zip, or .gz. so they are instantly recognizable. To download
compressed files, you must change to binary mode, because you’re downloading binary files. Do so with:

 ftp> binary

Once you are placed in the correct directory containing the file to be downloaded, start the download
process with the get command:

 ftp> get filename

As you download the file, there will be a prompt on the system, and you won’t be able to enter any
keystrokes.

After the file has been transferred successfully, you’ll be given a message similar to the following:

 Transfer complete

You may also be told the size of the file and the transfer time.

Because you’re through with your file needs, close the connection with the bye command:

 ftp> bye

What do I Do with the File?

If you download an ASCII file, you can view it using any editor, including vi or emacs. If it’s a
sourcecode file, you can compile it for use on your own system; we explain the process in Chapter 10. If
you’ve downloaded a compressed binary file, you will have to uncompress it (and perhaps unarchive it)

at the command line using uncompress, unpack, tar, or gzip—things you learned about in Chapter 4.

Previous Table of Contents Next

-->

Previous Table of Contents Next

Other Networking Commands

In addition to ftp, which is used to transfer—copy—files from system to system, there are a number of
other common networking commands. These commands work to help the connection among your
computer and others on the same link. Generally, if you work at a site with multiple UNIX computers,
these computers will be networked together, usually using the Ethernet network protocol. Your systems
may also be networked with the worldwide Internet, which as you already know is a collection of
connected networks. (Say that three times fast.)

Using the Rlogin Command

The rlogin command allows you to remotely login to another computer on your network (remember that
if you’re on the Internet, you’re on a worldwide network). You must, of course, have a valid user
account on any machine to which you want to login. To use rlogin, you need the name of the machine to
login to. To login a machine named nicollet, you’d use a command line like the following:

 gilbert:/$ rlogin nicollet

 Password:

At the Password prompt, you may need to enter your password on machine nicollet, which may or may
not be different from the password you use on your local machine. Once logged in, you’re computing on
the remote machine and can run any standard UNIX command. You also logout the same way you
normally logout:

 gilbert:/$ logout

 Connection closed.

 $

Note that after you logout from a remote machine, you’re back to the command prompt at your local
machine. This tends to get confusing, so be careful.

The basic form of rlogin is:

 rlogin hostname

where hostname is the name of the machine to login.

Using the Telnet Command

The telnet command works much the same as rlogin does, allowing you to connect directly to a remote
machine. Because the telnet command is considered part of the toolkit used by the Internet surfer, it’s
actually gained in popularity over the years.

Telnet allows you either to run a command directly on a remote machine while displaying the results on
your own or to run a specific command on a remote machine (many sites that allow Telnet put
restrictions on what users can run, due to security concerns). With telnet, you only need to know the
address of the machine you’re connecting to, such as sunsite.unc.edu, as illustrated by the following:

 gilbert:/$ telnet

 telnet> open sunsite.unc.edu

 Trying 198.86.40.81

 Connected

 *************** Welcome to SunSITE.unc.edu ***************

 SunSITE offers several public services via login. These include:

 NO MORE PUBLIC gopher login!

 Use lynx the simple WWW client to access gopher and Web areas

 For a simple WAIS client (over 500 databases), login as swais

 For WAIS search of political databases, login as politics

 For WAIS search of LINUX databases, login as linux

 For a FTP session, ftp to sunsite.unc.edu. Then login as anonymous

 For more information about SunSITE, send mail to info@sunsite.unc.
edu

 UNIX (R) System V Release 4.0 (calypso-2.oit.unc.edu)

 login: swais

In this case, sunsite.unc.edu offers a variety of services to the general computing public, here centering
around WAIS databases. Other Telnet sites may not offer such a wide variety of services; a site like
archie.rutgers.edu offers only archie searches.

Unfortunately, Linux does not offer archie yet, so you’ll need to use a public archie server to perform a
search.

Sunsite.unc.edu is a public Internet site. If you’re using telnet within your corporation, the rules will be
slightly different. Here, sunsite.unc.edu offers public access; you don’t need an account on sunsite.unc.
edu, nor do you need a password. However, sunsite.unc.edu does put restrictions on what can be done by
a visitor; for example, you can’t use the standard Linux command set and your options are limited to the
login selections. For a private system, you’ll need an account on the remote system before you can login,
and you may be subject to the same sorts of restrictions.

Previous Table of Contents Next

-->

Previous Table of Contents Next

The Usenet and Newsgroups

The Internet’s roots can be traced to the Usenet, a worldwide messaging system. The Usenet, while
technically comprising a portion of the Internet, is best known for electronic-mail and newsgroup
distribution.

Thousands of computers are linked—worldwide—in the loose network we call the Usenet, a public
network of linked UNIX and non-UNIX machines, dedicated to sending information to companies,
schools, universities, the government, research laboratories, and individuals. Some of these links occur
over phone lines and use the uucp command to send messages back and forth, but most links nowadays
go over the Internet, using the NNTP, or Network News Transfer Protocol, to send messages between
machines. No matter how the messages get passed around, you can read them the same way.

The Usenet performs a variety of services, but perhaps the most popular service involves newsgroups. A
newsgroup is a discussion of various topics, ranging from computing to sociology to boomerangs to
Barney the Dinosaur. In fact, there are thousands of Usenet newsgroups. Some are trivial and a waste of
bandwidth, others are of interest to only a small set of users, and others would interest a host of users.
(Take a gander at alt.sex.bestiality.barney, and you’ll see the validity of this point.)

These newsgroups are divided into classes, to better allow users to figure out what to read in the plethora
of information arriving daily. Table 9.4 covers the major newsgroup classifications.

Table 9.4The Major Usenet Newsgroup Classifications

Name Subject

alt alternative hierarchy, not subject to other rules

biz business-related groups

comp computing

misc miscellaneous subjects

news news about the Usenet

rec recreational activities

sci science

soc social issues

talk talk

Not only is this computer-dweeb heaven, but the Usenet provides valuable information on everything
from vegetarian recipes to buying a house. There are Usenet newsgroups for just about every topic you
can imagine—and then some, from rec.sport.football.college to soc.culture.bulgaria. (Alt.buddha.short.
fat.guy was definitely a surprise the first time we saw it.) In addition, there are regional newsgroups;
those of us in Minnesota have access to a wide range of newsgroups that begin with mn, such as mn.
forsale.

While the Usenet can be a powerful information source, you’ll also find a lot of inaccurate information,
as nearly anyone can get on the Usenet. So take what you read with a grain of salt. Generally, the more
technical the group, the more accurate the information you’ll get. The group comp.compilers
(information on writing compilers for computer languages) certainly contains more unbiased
information than comp.sys.next.advocacy (advocates—an unbiased group if there ever was one—of
NeXT workstations).

However, there are many Usenet newsgroups that you’ll find useful. Being technical types ourselves, we
regularly peruse the newsgroups relating to UNIX, the X Window System, and related topics (electronic-
mail packages like Elm and Pine, software like emacs). Appendix A lists Linux-related newsgroups.

These classifications are broken down into specific newsgroups. The syntax of a newsgroup name is
simple: the name of the classification followed by a descriptive suffix. For example, the name of the
newsgroup devoted to questions concerning the UNIX operating system is comp.unix.questions. Note
the use of periods to separate the elements. A list of some popular newsgroups is listed in Table 9.5.

Table 9.5A Sampling of Frequently Accessed Usenet Newsgroups

Newsgroup Topic

comp.databases Database-management issues

comp.lang.c C-language issues

comp.text Text-processing issues

comp.unix.questions Questions about the UNIX operating system

misc.jobs.offered Job openings

sci.space.shuttle Space exploration issues associated with the NASA space shuttle

NOTE: A list of Linux-specific newsgroups is contained in Appendix A.

Newsgroups can be open or moderated. Open newsgroups mean that anyone can post to them, while
moderated newsgroups have someone to review the postings before they’re passed out to the general
public. As you might surmise, moderated newsgroups tend to be more reliable and useful.

The Usenet newsgroups are aggressively egalitarian. News can be posted by just about anyone. Using it
as a source of information requires some skepticism on your part. On the one hand, it’s a great place to
find very technical, specialized information—the more technical and specialized the better. Many
leading figures in the computing industry regularly post information in the newsgroups. And because
there’s nothing new under the sun, chances are that the problem that plagues you has already been
solved by someone else in the Linux world.

On the other hand, every opinion is not created equally, and a lot of ill-founded opinions can be found in
most newsgroups. Veterans refer to the signal-to-noise ratio; newsgroups with a lot of ill-founded
opinions and bickering are said to be filled with noise. As with any other source of information, treat
what you see on the Usenet newsgroups with a healthy dose of skepticism.

Previous Table of Contents Next

-->

Previous Table of Contents Next

Reading and Writing the News

Although all the news items are text files and could in theory could be read with vi or emacs, there are
so many of them in so many separate files that it’s not really feasible to read each file. A full Usenet
newsfeed, that is, all the incoming message files from all the worldwide newsgroups, adds more than 50
megabytes of files to your disk each day. (Remember when we said earlier that UNIX files seem to
propagate proportionally? Well, there’s your example.) This is how a type of software, called
newsreaders, evolved. Newsreaders help you sort out, with varying degrees of usefulness, what to read
from the hundreds of new files that appear daily. The basic idea is to read those messages you’re
interested in and skip the rest. There’s simply no way to read every incoming message, even if you
spend all day in front of your computer.

We are not going to cover the many newsreaders in depth; Linux features several, and you’re
encouraged to check them all out. What you use will partially depend on how you get your news
delivered. If you’re on a corporate network, you’ll access the news from a local server. If you’re
connected to the Internet via ISP, then you’ll use the NNTP protocol to grab your news from the ISP
news server. When you ran setup back in Chapter 2, you were asked about this; if you installed the
wrong kind of newsreader, you can always go back to setup and install one more to your liking. Linux
newsreaders include:

• trn, a reader with expanded search capabilities (shown in Figure 9.7)

Figure 9.7 The trn newsreader.

• inn, a basic reader
• tin, a threaded reader that arranges messages by topic (as shown in Figure 9.8)

Figure 9.8 The tin newsreader.

javascript:displayWindow('images/09-07.jpg',582,368)
javascript:displayWindow('images/09-07.jpg',582,368)
javascript:displayWindow('images/09-08.jpg',579,340)
javascript:displayWindow('images/09-08.jpg',579,340)

Slurping the News

As the Internet grows in popularity, more and more of the Usenet news gets transmitted over the Internet
rather than the older uucp phone-line method.

Over the Internet, the Usenet news jumps from one machine to another through the NNTP. If you use
NNTP to get your news, you can view the news with a Web browser such as Netscape Navigator.

In addition, a freeware program called Slurp can acquire news for you via NNTP. This is very useful for
downloading select Usenet newsgroups to your Linux system. You can then read the messages offline
with a newsreading program such as xrn, nn, or trn. We’ve included Slurp on the second CD-ROM.

How do I Find a File for Download?

If you’re on the Usenet, you’ll be surrounded by information regarding free software and how to get it.
The trick is knowing where to look for it.

Some universities and corporations maintain archive sites that support anonymous FTP. These locations
are referred to regularly in the newsgroup comp.answers.

In addition, many computer-related newsgroups will contain news items labeled FAQ, or Frequently
Asked Questions. One of the frequently asked questions will (undoubtedly) concern the existence of
archival sites.

And, finally, you can post a plaintive plea in a newsgroup, asking for information about a particular
program. You may receive some rude comments from people who tire of answering questions from
innocent beginners, but undoubtedly some kind person will answer your request with useful information.

Summary

This chapter covered Linux’s many tools for connecting to other computer systems and to the Internet
using TCP/IP features. These include TCP/IP connections to an existing network and dialup access using
Linux’s SLIP and PPP tools.

Once connected, Linux offers many commands for networking Internet access and usage, including ftp
(which lets you transfer software from remote sites), rlogin, and telnet. You can also peruse Usenet
newsgroups thanks to several newsreaders. In addition, Linux offers several mail options, including the
mail command and the xmh, pine, and elm newsreaders. We’ve included several freeware Web
browsers on the second CD-ROM.

The Usenet is a series of newsgroups. Linux features several newsreading programs.

In the next (and final) chapter, we cover programming and Linux.

Previous Table of Contents Next

-->

Previous Table of Contents Next

Section IV
Linux Programming

The books ends with Chapter 10, an overview of Linux programming. In it you’ll find explanations of
Linux’s programming tools (including the GNU C compiler) and its X Window programming tools.

Chapter 10
Programming in Linux

This chapter covers:

• The GNU C compiler
• C programming
• The cc command
• Using make
• Programming under the X Window System
• Using LessTif to mimic Motif
• Using shared libraries
• Using imake
• Using Tcl/Tk
• A short introduction to using Perl
• Using gawk, the GNU Project version of awk

Programming under Linux

This chapter is not going to turn you into an instant Linux and X Window programmer. We will,
however, show you how to program in the Linux environment. We’ll cover a lot of the odd things that
you’re supposed to know when programming on Linux, including where the X libraries are and some
interesting tidbits about how Linux uses shared libraries.

For the programmer, Linux offers all the freeware utilities and compilers you’d expect for software that
relies heavily on offerings from the Free Software Foundation. Starting with the GNU C compiler, you
can develop C, C++, Fortran (via g77), and Objective-C programs on your Linux system. In addition to
these mainstream languages, Linux supports Tcl, Perl, and a host of other programming languages and
second utilities. In addition, we’ve thrown freeware called LessTif on the second accompanying CD-
ROM, for those of you who want Motif compatibility but don’t want to pay for commercial software.

Your main worry is whether you’ve installed the proper disksets for your compiler and associated tools.
(If you haven’t heard of one before, a compiler is a tool that converts a program in text form into an
executable Linux command.) Being programmers ourselves, we always recommend this; if you haven’t,
you can always go back and use the setup program to reinstall the proper disk sets.

If you’re not a programmer, chances are that you’ll be lost in much of this chapter. Even so, you’ll find
some interesting Linux utilities mentioned here. In addition, many free Linux programs come in source
code-form only; you’ll need to learn to compile them, so it’s important to know about the process of
compiling and linking C programs.

The Linux C Compiler: GNU CC

The main C and C++ compiler on Linux is the GNU gcc. It is an all-encompassing program and can
compile a number of programming languages: C, C++, Fortran, and Objective-C. Gcc, or cc, which is
linked to gcc, compiles C and C++ programs just like you’d expect. The command-line parameters are
all standard cc parameters in addition to the traditional gcc parameters. If you’re used to programming
on UNIX, you’ll find Linux works as you’d expect.

For those new to C programming, we’ll provide a short introduction. If you’re really new at this, you’ll
likely want to get a C programming book to help you out. Appendix A lists a few.

C Programming

C programs—and in fact, most programs in general—usually start in plain old text files. (Linux makes
extensive use of simple text files, as you’ve seen throughout this book.) These text files are created with
text editors like vi or emacs. Once created, C programs must be compiled with a C compiler, cc or gcc
(which are one and the same on Linux). This C compiler converts the text file, which the programmer
wrote, into object, or machine, code for the Intel platform. Then, object modules (files of object code)
are linked together to make an executable program, a brand new Linux command. Once the process is
successfully completed, you can execute this program like any other command you type at the command
line. Being able to create your own command is a neat thing.

In addition to creating C or C++ programs, you can use shell scripts or write code in a number of
interpreted languages including Perl and Tcl, which we cover later in this chapter. From the plethora of
Linux program-creation tools, you need to choose the appropriate tool for any given task.

The first step is identifying what types of files you’re dealing with. Table 10.1 lists the most common
Linux file types and their common file extensions.

Table 10.1Program File Types

File Suffix Meaning

.a Library

.c C program

.C C++ file (note the uppercase C)

.cc C++ file

.cpp C++ file

.cxx C++ file

.c++ C++ file

.f Fortran program

.for Fortran program

.h C or C++ include file

.hxx C++ include file

.o Object module (compiled from a .c file)

.pl Perl script

.pm Perl module script

.s Assembly code

.sa Shared library stubs linked with your program

.so.n Run-time shared library, version number is n

.tcl Tcl script

.tk Tcl script

Most C programs are stored in one or more files that end with .c, for example, as neatstuff.c and
myprog.c. When you compile a C file, the C compiler, cc, creates an object file, usually ending with .o.
The linker (called linkage editor in Linux parlance), ld, then links the .o files to make an executable
program. The default name for this program is a.out, although no one really uses a.out for their program
names. Instead, programs have names like ls, cp, or mv. All of this is controlled by the cc command.

Previous Table of Contents Next

-->

Previous Table of Contents Next

The Cc Command

The cc command executes the C compiler, which can compile and link C programs into executable
commands. To test your Linux C compiler, we’ll use the following short program:

 /*

 * Example C program for Chapter 10,

 * Linux Configuration and Installation.

 */

 #include <stdio.h>

 int main(int argc, char** argv)

 {

 /* This is a comment. */

 printf("Linux is my favorite O.S.\n");

 return 0;

 }

 /* chap10.c */

Enter the preceding code into a text file named chap10.c, using your favorite Linux text editor.

It’s a good idea to always name C program files with a .c extension. This isn’t required, but following
conventions like this makes Linux easier to use.

After you type in this short program, you can do the following simple steps to create a working
executable program from this C file.

The program you typed in was simply a text file. There’s nothing in it to make it an executable
command. To do so, we need to compile and link the program. Both steps are accomplished by the
following cc command:

 $ cc -o chap10 chap10.c

This command runs the C compiler, cc. The -o option tells cc to build a program named chap10 (the
default name without the -o option is the awkward a.out). The chap10.c part of the command tells cc to
compile the file named chap10.c. The cc command both compiled and linked the program.

You should now have an executable program named chap10. You can execute this program by typing
chap10 at the command line. When you do, you’ll see the following output:

 $ chap10

 Linux is my favorite O.S.

Now you’re a real C programmer, ready for a lucrative new career.

Compiling the Long Way

When we used the cc command, cc first compiled the program into an object module. Then cc linked the
object module to create an executable program, the file named chap10. This is very important if you
need to compile more than one file into your program. Most C programs require a number of .c files, all
of which must be compiled and linked to form one program. One of the main reasons for separating C
programs into multiple files is sanity: reading a 1MB program in one file is ludicrous. And yes, C
programs get to this size, and even much bigger than 1 megabyte. Some C programs we’ve worked on
include more than a million lines of C code. You need to know how to compile multiple .c files into one
executable command because the vast majority of Linux freeware comes in this fashion.

To use the long method of compiling and linking, we split the tasks into two steps. First, you compile all
the .c files you require. Then you link the resulting .o files (we’ll get into this later) into your executable
program. Because we have a very small C program typed in already (you did type it in, didn’t you?),
we’ll start with that.

Compile chap10.c into an object module, an .o file, with the following command:

 $ cc -c chap10.c

If you are successful, you should see a file named chap10.o in your directory. The .o file is called the
object file (or object module); it contains unlinked machine code.

The next step is to link the object files (there’s usually more than one) into an executable file. To do this,
we again use the -o option to cc, but this time we pass a .o file at the end of the command line, rather
than the .c file we used earlier:

 $ cc -o chap10 chap10.o

This command links the file chap10.o into the executable program chap10. You can place more than
one object filename on the command line, as in the following example:

 $ cc -o chap10 chap10_a.o chap10_b.o chap10_c.o

Normally you’ll want to pick more descriptive filenames than the ones we’ve used.

Previous Table of Contents Next

-->

Previous Table of Contents Next

Working with Cc

In normal operation, the cc command executes a number of other commands under the hood. One such
command is cpp. The cpp command is the C preprocessor. This reads a C program file, a .c file, and
expands any # directives. In the short program you typed in earlier, the #include directive means to
include the file stdio.h. That is, cpp reads in stdio.h and inserts the contents right at the #include
directive. Most C programs use one or more include files.

These include files are normally stored in /usr/include. If you use the angle brackets, (<) and (>),
around an include filename, like <stdio.h>, this means that cpp looks for a file named stdio.h in the
standard places, of which /usr/include is the default (the -I command-line parameter can add more
directories to the include file search path; see Table 10.2 later). You can also use quotation marks (“)
around the filename.

Table 10.2Cc Command-Line Parameters

Parameter Meaning

-Idirectory Searches the given directory and /usr/include for include files

-c filename.c Compiles the file filename.c and builds the object module filename.o;
this does not create an executable command

-o progname Names the executable program progname; the default name is a.out

-g Compiles with debugging information

-O Optimizes the program for best performance

-lLibrary Link in the named library

All C programs are built around the section labeled main(). The main() section (called a function in C
parlance) is executed when the program starts. Our main() function simply calls the printf() function,
which prints the text between the quotation marks to your screen. As you can tell, this is not a
sophisticated program.

The \n character passed to printf() in our program means that a newline character is printed. This starts a
new line. If you’re used to a DOS machine, you’ll note that UNIX uses a newline character where DOS
uses a carriage return and then a new line. The backslash, \, is used as a special character in C programs.
Usually, a backslash is combined with another character to make a nonprintable character, such as \n for

a new line, \t for a tab, or \a for a bell.

Using the Cc Command

The cc command uses a number of command-line parameters to tell it what to do and to allow you to
fine-tune the process of building executable programs from C language text files. Table 10.2 lists
commonly used cc command-line parameters.

Most UNIX compilers don’t allow you to mix the g (include debugging information) and O (optimize)
options, but the GNU C compiler used by Linux allows this.

There are many cc command-line options; use man cc to see them.

Linking with Libraries

For C programs, a library is a collection of commonly used routines that you can reuse in your
programs. Most C programs require more than just the standard C library. If you look in /usr/lib, you’ll
see most of the libraries supported by Linux. Table 10.3 lists the major locations for Linux libraries.

Table 10.3Locations for Linux Libraries

Directory Libraries

/usr/lib Main system libraries

/usr/openwin/lib Open Look libraries like the Xview library

/usr/X11R6/lib Most X Window libraries

To link with a given library, you use the -l command-line option to cc. To link with the X11 library, use -
lX11; this is shorthand notion for linking in the library named libX11.a (or it’s shared-library equivalent,
libX11.so).

Previous Table of Contents Next

-->

Previous Table of Contents Next

ELF Files

This version of Linux uses a new object module format called ELF, short for Executable and Linking
Format. Programs compiled with ELF differ from those compiled in the older a.out format. ELF
provides better support for shared libraries, the primary reason for this migration. Shared libraries save
on memory usage when you run more than one program at a time, especially more than one X Window
program.

Normally, you won’t have to pay attention to ELF or a.out issues, except for one thing: the a.out
libraries are not compatible with the ELF libraries. This is especially true for shared libraries.

Thus, you need to be careful about any Linux binary programs you acquire. If you compile everything
from source code, then you’re OK, as Linux will use the libraries you have on your system.

But if you pick up applications in precompiled binary format, for example, Netscape Navigator or
NCSA Mosaic, you have to ensure that you have the proper shared libraries as expected by the
application, or the program simply won’t run.

When you install Linux (or any time later if you run the setup program), you can install both the a.out
and the ELF libraries. If you have the disk space, you should load both. If you need to choose one or the
other, go with ELF, as everything in the Linux world is migrating to ELF.

To see what systems your linker, ld, is configured for, try the following command:

 ld -V

You should see output like the following:

 ld version cygnus-2.6 (with BFD 2.6.0.14)

 Supported emulations:

 elf_i386

 i386linux

 i386coff

 m68kelf

 m68klinux

 sun4

 elf32_sparc

NOTE: The sparc, sun4, and m68k (Motorola 68000) are for cross-compiling. Chances are you
won’t use these options.

By default, gcc will compile to ELF format. To verify, use the file command on any executable file,
such as the chap10 file we created earlier:

 file chap10

You should see output like the following:

 chap10: ELF 32-bit LSB executable i386 (386 and up) Version 1

This indicates that the default object file format on Linux is now ELF, as expected.

NOTE: The term a.out, unfortunately, means different things in different contexts. If you
compile a C program with gcc, the default output filename remains a.out. Even so, this a.out file
will appear in ELF object file format, not the older object file format, called a.out format. This is
yet another confusing part of Linux.

If for some reason you need to force gcc to compile in a.out format, you can use the following command
in place of gcc:

 gcc -b i486-linuxaout -c foo.c -o foo

This command requires the a.out libraries. If you did not load them, this command will fail.

Linux Shared Libraries

Linux supports a great concept called shared libraries. Because so many Linux programs link in very
large libraries, particularly X Window libraries, the program size tends to grow. When you run these
programs, they take up more memory (real and virtual). To help alleviate this problem, Linux supports
shared libraries, similar to Windows DLLs, or Dynamic Link Libraries. The whole purpose is that many
programs can reference a single copy of the library loaded into memory. For X Window programs, this
saves a lot of RAM.

The problem with Linux shared libraries is that they are very tightly linked to their version numbers. If
you upgrade your version of Linux, many old applications may still demand the old versions of the
shared libraries, and you may no longer have these old versions on your system. If you have a lot of
Linux programs that came only in binary format (Netscape Navigator is a common program in this
category), you either need to load the old shared libraries or wait until all the programs you use get
upgraded. If you have the source code for the program, you can simply recompile and relink, and
everything should be OK.

Programming with X

Linux comes with a number of X Window libraries, ready both for you to program with and for you to
use when compiling freeware X Window applications. Unfortunately, Linux does not come with the
Motif libraries, which are necessary to compile a number of neat programs, including the Mosaic
Internet browser. (You can purchase the Motif libraries from a number of third parties, though; see
Appendix A for details. Or, you can try a freeware version of the Motif API, called LessTif, which is
described later.)

When compiling X programs, you normally don’t have to do anything special to link, other than adding
the X libraries to your cc command line. The X Window include files should be in the proper place, /usr/
include/X11 (actually a symbolic link to /usr/X11R6/include/X11, but good enough for the compiler).

To compile and link an X program, you can use the following command line:

 cc -o foo foo.c -lXaw -lXt -lXext -lX11 -lSM -lICE

The -l option tells cc (really ld, as called by cc) to link in the named library. These libraries provide
commonly used functions. The ones listed earlier provide X Window functions for the program. Thus,
the -lXaw option tells ld to link in the Xaw library. By convention, this library file will be named
libXaw.a for a static library and libXaw.so for a shared library.

NOTE: For more information on X and Motif programming, see URL http://ourworld.
compuserve.com/homepages/efjohnson/motif.htm on the World Wide Web.

Previous Table of Contents Next

http://ourworld.compuserve.com/homepages/efjohnson/motif.htm
http://ourworld.compuserve.com/homepages/efjohnson/motif.htm

-->

Previous Table of Contents Next

Using LessTif

Everyone wants to use the Motif libraries until they find out that they’re an added-cost feature for Linux.
Unfortunately, the Motif library is commercial software, which means you have to pay extra to get either
the Motif library source code or a set of binaries for your platforms. Add to this hassle the frustrating
nature of the complex Motif license for software developers, where it’s almost impossible to tell if you
can actually distribute your applications, and you’re ready to scream.

However, we’ve run across a great programming effort called LessTif, which is gaining more Motif
functionality each day. While it’s not in completed form, we thought you might want to take a look at it,
so we included it in the second CD-ROM’ s programming/lesstif directory.

LessTif is a workalike clone of the Motif libraries. That is, it is a set of programming libraries that look
and act like the Motif libraries (Xm and Mrm). Under the hood, the code is entirely different. From a
programmer’s perspective, though, LessTif has the same API as the Motif libraries and supports a
number of Motif widgets, supporting more Motif widgets with each release. It uses public header files
with the same name as their Motif counterparts.

For your programs, LessTif should allow your Motif programs to be recompiled under LessTif with no
source code changes—at least in theory. We’ve had to make a few changes to get around the fact that
LessTif is incomplete as we write this. Luckily, because LessTif is undergoing what looks like constant
development, the problems we face today should gradually go away.

Distributed under the GNU license, you can use LessTif in free applications. You’ll probably want to
check the GNU licenses before using LessTif for commercial software.

Installing LessTif

LessTif comes in source code format. All you need to do is run xmkmf and then make in the standard
way to build X programs:

 xmkmf

 make

If you run into any problems, there’s a file named INSTALL with the distribution.

Problems with LessTif

The developers of LessTif clearly let you know that LessTif is not a complete Motif clone by any means.
This is only natural at this early stage in LessTif’s development. Even so, there’s quite a few things
present in LessTif that will appeal to Motif programmers.

LessTif, as incomplete free software, is not without its problems, as you’d expect. But each version gets
better and better.

Editres Support

Editres is an X application and protocol that allows programs compiled with the X Toolkit (Xt)
Intrinsics library to export information on widget attributes to an outside program, namely, editres itself.

With editres, for example, you can change the font, colors, and text displayed with any widget,
presuming an application supports the editres protocol. To do this, an application must set up an event-
handling function and pass the special editres library call, _XEditResCheckMessages, as the handler.
For example, the following code sets this up for a Motif application:

 #include <X11/Xmu/Editres.h>

 Widget toplevel;

 void _XEditResCheckMessages();

 /* ... */

 XtAddEventHandler(toplevel,

 (EventMask) 0,

 True,

 _XEditResCheckMessages,

 NULL);

With this set up, your Motif application will properly respond to the editres protocol.

The reason we mention this is that LessTif calls XtAddEventHandler automatically from the Vendor
shell widget. Thus, all LessTif programs will support editres. But there’s a slight problem with this.
_XEditResCheckMessages resides in the X miscellaneous utilities library (libXmu.a) and you must be
sure to link this in.

To link with LessTif, you need to link in at least the following libraries, as shown in the following
command:

 cc -o foo foo.c -lXm -lXmu -lXt -lX11

We mention this because you’re probably not linking in the Xmu library now. It’s nice that LessTif
supports editres from the start, but you need to remember to link in the Xmu library.

All in all, for free software, it’s hard to complain about LessTif. LessTif isn’t ready for prime-time usage
yet, but it has made great strides in recent months. You’ll probably want to track its progress and
conduct some tests before using it. Better yet, you may want to volunteer to help the effort.

Finding out More about LessTif

You can look up the LessTif home page on the World Wide Web by accessing http://www.hungry.com/
products/lesstif/. You can also use FTP to acquire the latest version of LessTif, at machine ftp.hungry.
com in the pub/hungry/lesstif directory.

Previous Table of Contents Next

http://www.hungry.com/products/lesstif/
http://www.hungry.com/products/lesstif/
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch10/ftp.hungry.com
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch10/ftp.hungry.com

-->

Previous Table of Contents Next

XForms

XForms is a C library designed to dramatically simplify the creation of X programs. The basic task in
XForms is creating forms, XForms terminology for panels, windows, or dialogs. A form is really a top-
level window containing a number of widgets. By simplifying the options and coming up with a good
set of default values, XForms reduces much of the complexity in creating X applications. You do pay a
price in reduced flexibility, but for many application needs, XForms will be the right fit.

One of the areas of reduced freedom and complexity is widget layout. All widgets are placed in an exact
position, be it in pixels, millimeters, or points (1/72 of an inch). Other widget sets, like Motif, provide an
extensive set of widgets that control the layout of other widgets. Of course, widget layout is one of
Motif’s most troublesome aspects for developers new to the library. XForms, on the other hand,
eliminates most of these options and confusion by placing widgets directly.

XForms allows you to populate your forms with widgets such as buttons, sliders, and text-entry fields.
Some of the more innovative widgets include dials, clocks, and X-Y data plots. The X-Y data plots will
appeal to those in the academic community who want to display data graphically.

Should the XForms base widget set be too confining for your needs, you can create “free” objects,
something like the Motif drawing area widget, where your application gets a blank canvas to draw in
and callbacks to handle all events. This allows a way to extend the base widget set. XForms includes an
extensive API for adding new widgets.

The look and feel of XForms applications varies. You can create a variety of push-button styles,
including beveled push-buttons and rounded-corner buttons, so your interface can look like Motif, Open
Look, or just about anything else.

A lot of the look seems to come from older Silicon Graphics applications. Many of the widgets support
neat border styles, but the menus look strange. It took us a long time to get used to the menus in
XForms; they don’t interact the same as menus in most toolkits, and they take some getting used to.

On the plus side, XForms supports a number of text styles and fonts, which is great for those who don’t
know much about the long X font names. With smart use of the font styles, your XForms programs will
look much better than most Motif programs, with much less coding.

Coding is one area where XForms excels. You can generally create a working application in a very short
amount of time, with very little code.

We’ve included XForms in a binary version on the second CD-ROM. XForms is a copyrighted product
that is freely available for noncommercial use only. For commercial use, you need to contact the
XForms authors at xforms@world.std.com. We cannot stress enough the importance of following this
guideline.

To acquire XForms via the Internet (there may be an updated version by the time you read this), you can
FTP to one of the following sites: bloch.phys.uwm.edu in the pub/xforms directory, ftp.cs.ruu.nl in the
pub/XFORMS directory, and imageek.york.cuny.edu in the xforms directory. On the Web, see http://
bragg.phys.uwm.edu/xforms.

Programmer’s Tools

In addition to the basic compiler, Linux comes with many utility programs and tools to make
programming easier. The first and foremost tool is a program called make.

Building Programs with Make

Most C programs require more than one .c file of source code. When one of these files changes, at least
one (and maybe more) of the files must get recompiled to have the executable program reflect the
changes. Tending to be lazy, programmers don’t want to recompile all the files if just one changed.
Furthermore, these lazy programmers don’t want to have to keep track of all the files that changed. This
is where the tool called make comes in.

Make is a command that helps build or “make” UNIX programs from the C language source code files.
make uses a set of rules, stored in a file called Makefile, to tell it the most efficient way to rebuild a
program. You keep a Makefile in each directory where you develop C programs.

The Makefile contains a set of rules, using a rigid syntax, that describe how to build the program. Most
of the rules declare which parts of the program depend on other parts. Using these dependency rules,
make determines what has changed (based on the file modified date) and what other things depend on
the file or files that changed. Then make executes the commands in the Makefile to build each thing
that needs to be rebuilt.

The basic Makefile syntax is deceptively simple. (Linux includes the GNU make program, which
accepts a number of rule shortcuts. For this chapter, we’ll just cover the basics. Use the man make
command to find out more about make.)

You start out with a so-called target. The target is something you want to build, such as our program
chap10 from the earlier example.

file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch10/bloch.phys.uwm.edu
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch10/ftp.cs.ruu.nl
file:///D|/Just/Linux/Linux%20Configuration%20and%20Installation/ch10/imageek.york.cuny.edu
http://bragg.phys.uwm.edu/xforms
http://bragg.phys.uwm.edu/xforms

Previous Table of Contents Next

-->

Previous Table of Contents Next

To create a target in the Makefile, begin with a new line and name the target—what you want to
build—then place a colon (:) and a tab, and then list the files the target depends on. Starting on the next
line, begin with a tab, then place the UNIX command used to build the target. You can have multiple
commands, each of which should go on its own line, and every command line must start with a tab.

In the abstract, the Makefile rules look like the following:

what_to_build: what_it_depends_on
command1_to_build_it
command2_to_build_it
command3_to_build_it
…
lastcommand_to_build_it

In the abstract, this looks confusing. Here’s a more concrete example, using the chap10 program we
provided earlier.

The target we want to build is the chap10 program. The chap10 program (the target) depends on the
object module chap10.o. Once we have the object module chap10.o, then the command line to create
the chap10 program is:

 chap10: chap10.o

 cc -o chap10 chap10.o

This make rule states that if chap10.o has a more recent date, then execute the cc command to build the
chap10 program from the object module chap10.o.

This is just part of the task; we still have to compile chap10.c to create the object module chap10.o.
That is, the file chap10.o, is said to depend on the file chap10.c. You build chap10.o from chap10.c. To
do this, we use another make rule.

This time, the object module chap10.o depends on the text file chap10.c. The command to build the
object module is:

 chap10.o: chap10.c

 cc -c chap10.c

With this make rule, if you edit chap10.c, you’ll make the file chap10.c have a more recent date/time
than the object module chap10.o. This causes make to trigger the cc command to compile chap10.c into
chap10.o.

You’ve discovered the secret to make’s rules. Everything depends on the date/time of the files, a very
simple—but clever—idea. The idea is that if the text of the program .c file is modified, you better
rebuild the program with cc. Because most users are impatient, if the .c file hasn’t been changed, there’s
simply no reason (at least in our example) to rebuild the program with cc.

A Make Example

To try make, enter the following text into a file named Makefile:

 #

 # Test Makefile

 #

 # The program chap10 depends on chap10.o.

 chap10: chap10.o

 cc -o chap10 chap10.o

 # The object module chap10.o depends on chap10.c.

 chap10.o: chap10.c

 cc -c chap10.c

This Makefile should be in the same directory as your sample C program file, chap10.c. To use make,

we need to tell it what to make, that is, what target we want to build. In our case, we want make to build
the program chap10. The following command will build this program:

 $ make chap10

 cc -c chap10.c

 cc -o chap10 chap10.o

We should now have the chap10 program ready to run. If we try make again, it—being very lazy—tells
us there’s no new work to do:

 $ make chap10

 chap10 is up to date.

Why? Because the chap10 program was built, and nothing has changed. Now, edit the chap10.c file
again or use the touch command to bump up the date/time associated with the file:

 $ touch chap10.c

When you call make again, it knows it now needs to rebuild the chap10 program, because presumably
the chap10.c file has changed since the last time chap10.c was compiled with cc. Because touch only
updates the date/time associated with the file and doesn’t change the internals of the file in any way,
we’ve just fooled make. make doesn’t bother checking if a file is different; it merely checks the time the
file was last written to, blindly assuming that no one would ever write to a file without modifying its
contents. Normally, though, you don’t want to fool make; use its simple rules to make your life easier.

Make supports a number of useful command-line parameters, as shown in Table 10.4.

Table 10.4Make Command-Line Parameters

Parameter Meaning

-f makefile Uses the named file instead of Makefile for the rules

-n Runs in no-execute mode—only prints the commands, doesn’t execute
them

-s Runs in silent mode; doesn’t print any commands make executes

Previous Table of Contents Next

-->

Previous Table of Contents Next

As you compile Linux freeware, you’ll notice that there are a lot of conventions with make and
Makefiles. For example, most Makefiles contain a target called all, which rebuilds the entire program
when you execute:

 $ make all

For this command to work, the Makefile must have a target named all that tells make what to do to
rebuild everything. In addition, most Makefiles contain a clean target that removes all .o files and other
files created by the compiler, and an install target that copies the built executable file to an installation
directory, such as /usr/local/bin.

Imake

In addition to make, there’s another tool called imake. Imake is used to generate Makefiles on a variety
of systems. Imake uses an Imakefile for its rules. These rules then help generate a Makefile, which is
used by make to build the program. Sound convoluted? It is. The main reason imake exists is because
of radically different system configurations, especially where the X Window System is concerned.

You’ll find imake especially popular with programs for X Window. The problem with X is that there
are so many options that every UNIX platform is configured slightly differently. There’s simply no way
you could write a portable Makefile that could work on all such platforms. Imake uses an Imakefile
and configuration files that are local to your system. Together, the Imakefile and the local configuration
files generate a Makefile that should work on your system. (In addition to imake, there’s an even
handier package called GNU configure. Unfortunately, imake is very common among X Window
programs, and configure is not.)

If you need to compile programs for the X Window System and you see an Imakefile, here’s what you
should do. First, run the xmkmf shell script. This script is merely a simple front end to imake:

 $ xmkmf

 mv Makefile Makefile.bak

 imake -DUseInstalled -I/usr/lib/X11/config

These commands should make a backup of any Makefile you have (to Makefile.bak) and then create a
new Makefile based on the commands in an Imakefile.

Imake isn’t easy to grasp, so if you have problems with imake, check with your system administrator or
look up imake in a book on the X Window System (such as Using X, MIS:Press, 1992; see Appendix A
for a list of books on using the X Window System).

Debuggers

Because Linux remains firmly in the GNU program-development world, it provides the gdb debugger,
as well as the X Window front end, xxgdb, as shown in Figure 10.1.

Figure 10.1 The xxgdb debugger.

X Window Tools

If you’re developing X Window applications, a few extra utilities may help. The xman program
(mentioned in Chapter 5) provides a graphical front end and nice formatting for UNIX online-manual
pages.

For critical X programs, you’ll find xcmap very useful. This simple X application displays the current
colormap. For color-intensive X applications, this can help you track down obscure X problems.

Similarly, the xev application helps you see what events the keyboard keys are really sending to the X
server.

For selecting fonts, xfd and xfontsel both help you choose a good-looking font for your applications.

Parsers and Lexers

If you’re used to building your own parsers, you’ll like the GNU bison (a port of UNIX yacc—Yet
Another Compiler Compiler) and flex (a fast lex). Linux even includes flex++ for developing C++

javascript:displayWindow('images/10-01.jpg',589,639)
javascript:displayWindow('images/10-01.jpg',589,639)

scanners.

Other Tools

We list some more useful tools for programmers in Table 10.5.

Table 10.5More Useful Programming Tools

Tool Usage

ar Collects object files into libraries

diff Compares differences between files

gprof Gathers timing statistics about your programs for performance tuning

hexdump Displays ASCII, decimal, hexadecimal, or octal dump of a file

objdump Display information on object files

ranlib Generates an index in an ar-created archive (library)

rcs Source code Revision Control System

strace Displays system calls from your program

There’s even a tool called ansi2knr that converts ANSI C to old-style Kernighan and Ritchie-style C
(without function prototypes). With Linux, you don’t really need this, as gcc fully supports ANSI C.

There are more tools than what we listed in Table 10.5. Chances are that just about every UNIX
freeware tool is available on Linux.

Other Programming Languages

C is by and large the programming lingua franca on UNIX and Linux, with C++ (an object-oriented
extension to C) fast gaining in popularity. In addition to these languages, Linux provides a host of other
opportunities to program.

First, the GNU C compiler also supports the Objective-C extension to the C programming language.
Objective-C is very popular under the Nextstep environment. The GNU C compiler also supports a
Fortran 77 front end called g77.

For artificial intelligence fans, there’s Common Lisp (under the name clisp). Additional programming
languages include Ada and Pascal.

NOTE: None of the programming tools or languages get installed on a Slackware Linux system
unless you specifically ask for them by running the setup program.

Java the Hut

One of the hottest new languages, especially for World Wide Web applications, is Sun’s Java. Java
programs get compiled to a portable set of byte codes, which can execute on any system that supports
the Java Virtual Machine. There’s a version of Java for Linux; on the second CD-ROM: the Java
Development Kit, or JDK.. As of this writing, this software is in a very preliminary format, but it’s
worth checking out.

Previous Table of Contents Next

-->

Previous Table of Contents Next

Linux Scripting Languages

In addition to the programming languages discussed earlier, Linux offers even more, including a number
of scripting languages. A scripting language is a lot like the language that comes with the UNIX shell.
The main difference between a programming language and a scripting language is that scripting
languages are usually interpreted instead of compiled, and scripting languages usually make it easier to
launch Linux commands from within your programs—called scripts when you use a scripting language.
As you can tell, the line between programming languages and scripting languages is blurry.

Of the scripting languages available on Linux, the two hottest languages are Tcl and Perl, while gawk
continues to attract a lot of attention.

Tcl

Tcl, short for the Tool Command Language, is a very handy scripting language that runs on most UNIX
platforms and Windows NT. Combined with Tcl’s X Window toolkit, called Tk, you can build a lot of
neat X Window graphical programs without a lot of coding.

In addition, Tcl is made to be embedded in C programs, so you can use Tcl as a standard extension
language for your spreadsheet, game, or other software you write.

We mostly use Tcl to create programs that have a friendly user interface, that look like Motif programs,
and that can run on a wide number of systems. Tcl and the Tk toolkit present something akin to the
Motif look and feel—not close enough for purists, but close enough for most users. This is a great
benefit because the Motif libraries don’t ship with Linux, but Tcl does.

Tcl is a scripting language, much like the languages built into sh and ksh, the most common UNIX
command shells. The language has some nice features for handling strings and lists (of strings—just
about everything is a string in a Tcl program).

The Tk toolkit then acts as an add-on to Tcl, allowing you to easily build widgets and create an X
Window user interface. The whole concept of widgets, though, is likely to be daunting unless you’ve
programmed with one of the many X toolkits, such as Motif. Each widget acts as a part of your user
interface, for example, a list of files, a push button to exit the program, and so on. If you have worked
with Motif or the Athena widgets, you’ll catch on to the concepts of Tk pretty fast. Even if you haven’t
worked with the Motif or Athena libraries, we found the basics of Tcl very easy to grasp. (There are
some frustrating parts to Tcl, though.)

The Tk add-on to Tcl provides most of the standard set of widgets you’d expect. These widgets mirror
most of the main widgets in the Motif toolkit, except for the handy option-menu, combo-box, and
notebook widgets. Tcl exceeds Motif in a number of areas, too, especially with the canvas widget, which
allows you to place graphic “objects” such as lines, rectangles, Béziér curves, and even other widgets
inside the canvas.

Scripting with Tcl

Like most scripting languages, Tcl uses a dollar sign, $, to get the value of a variable. Everything in Tcl
is a text string, so it needs a special character to differentiate a string from the value held within a
variable. Thus:

 variable

is just the literal string variable, while

 $variable

returns the value stored in the variable named, appropriately enough, variable. This is the same as most
shell scripting languages. (There are some tricky aspects to this, though. We found that simple
typos—such as forgetting the $—were responsible for most of our Tcl errors.)

For example, if you have a directory name in the variable dir and you want to use the cd command to
change to that directory, you issue the following Tcl command:

 cd $dir

The basic syntax for Tcl seems like a cross between Lisp and C. The basic function, called proc, looks
much like a C function, for example:

 proc add_one { value } {

 return [expr $value+1]

 }

The braces give it a definite C feeling. The Lispishness comes from the use of the set command, instead
of assignment. That is, instead of a C statement like:

 a = b;

in Tcl you code this as:

 set a $b

(Remembering all the while that the $ can trip you up at first.)

One nice thing about Tcl is its ability to use variables at any time, without predeclaring them—except
for arrays, which you need to indicate are arrays before using them with widget commands.

Previous Table of Contents Next

-->

Previous Table of Contents Next

Working with Tcl

To try out some Tcl programs, you should run the Tcl interpreter, called wish, which allows you to enter
Tcl commands as if you were in a Tcl-based shell, which is what wish is.

The most interesting use of Tcl is to create graphical programs including widgets such as push buttons.
To create a push button in Tcl, use the button command:

 button .b1 \

 -text "My first button" \

 -command { exit }

NOTE: Because Tcl is a scripting language, you can use the backslash character, \, to extend a
command on one line over many lines. This makes your programs easier to read.

The preceding command creates a button widget named .b1 (the leading period is important). Just like
Linux uses the / character to mark the root directory, Tcl uses the period (.) to mark the root widget
(your application’s main window). We’re then creating a button widget that sits like a subdirectory
beneath the root widget.

The -command sets the Tcl command that will run when the button gets pushed. In our case, the exit
command exits wish and our Tcl script.

NOTE: It’s important to note that the code for the -command gets evaluated only when the
button is pushed, usually sometime after the button is created and usually when the Tcl program is
in another procedure. Because of this, local variables no longer have their values at execution
time.

This can be very difficult to debug. We will show some workarounds in the sample code.

To get a widget to appear, we must pack it. The pack command takes a lot of parameters, including the
name of the widget or widgets to pack:

 pack .b1

WARNING: Tcl widgets don’t appear until you pack them.

Making Script Files for Tcl

You can put together a set of Tcl commands into a script file, just like C and Bourne shell scripts. The
program to execute the script is again wish. The following script assumes that wish is located in /usr/
bin (as it is for Linux).

To turn our first example into a working script, we do the following:

 #!/usr/bin/wish

 #

 # example1.tcl

 #

 # Create a button.

 button .b1 \

 -text "My first button" \

 -command { exit }

 pack .b1

 # example1.tcl

To show you more of a flavor of Tcl scripting, we put together the following file. In it, Tcl commands
create a set of buttons that allow you to launch useful Linux programs like xman and xterm. The toolbar
appears at the bottom of the screen and uses the override-redirect mode that prevents a window manager
from placing a title bar around the window. Also, in honor of Windows 95, we place the current time at
the end of the toolbar.

In our script, we create a number of procedures, called procs in Tcl. The exec_cmd procedure executes a
text string as a UNIX command. We use the eval statement to deal with text-string issues and evaluate
any Tcl variables within the command. Try this Tcl script without the eval in the exec_cmd procedure
and you’ll see why we need it. (It has to do with evaluating the arguments as one string or as a command
line; this is one area where Tcl is not intuitive.)

The update_time procedure gets the current time, using the UNIX date command, and then changes the
text displayed in a widget (you pass update_time the widget name) and uses the after command to set up
a callback, the update_time procedure, to get called after a particular amount of time. With Tcl 7.5, you
can use the built-in clock command instead of calling the Linux program date.

The main part of the Tcl script creates a frame widget to hold all the buttons and then creates a set of
buttons. The logo button quits the script when it’s pressed. We use the words Linux and your machine’s
hostname for the text in the logo button.

The whole point of this Tcl script is to launch commonly used applications, particularly graphical ones.
The buttons set up are listed in Table 10.6.

Table 10.6Applications Launched from the toolbar.tcl Script

Button Launches

Manuals xman to view Linux online manuals

Mail elm (inside xterm window) to read mail

Shell xterm for a command-line shell

File Manager xfm, a Linux file manager

Images xv, an image-viewing and file-browsing program

Mahjongg Our favorite game on X

Previous Table of Contents Next

-->

Previous Table of Contents Next

The Tcl script that makes all this happen appears here:

 #!/usr/bin/wish

 #

 # toolbar.tcl

 # Tcl script that puts a toolbar to launch

 # programs at the bottom of the screen.

 #

 # Executes a command as a UNIX process.

 #

 proc exec_cmd { command } {

 # Execute as a UNIX process in the background.

 # We use eval to handle the messy details of

 # separating the command into its elements.

 # (Try it without eval and you'll see why.)

 #

 eval exec $command &

 }

 #

 # Tcl/Tk procedure to place the

 # current time in a widget. With Tcl 7.5,

 # you can also use the clock command.

 #

 set title_interval 40000

 set time_command "/bin/date \"+%I:%M %p\" "

 global title_interval time_command

 proc update_time { butn } {

 global title_interval time_command

 # Get current time.

 set timestr [eval exec $time_command]

 $butn config -text $timestr

 # Set up command to run again.

 after $title_interval " update_time $butn"

 }

 #

 # Global commands to execute when

 # toolbar buttons get pushed.

 #

 set cmds(man) "/usr/bin/X11/xman -notopbox -bothshown"

 set cmds(mail) "/usr/bin/X11/xterm -ls -e elm"

 set cmds(term) "/usr/bin/X11/xterm -ls"

 set cmds(file) "/usr/bin/X11/xfm"

 set cmds(xv) "/usr/bin/X11/xv"

 set cmds(xmah) "/usr/bin/X11/xmahjongg"

 # Make cmds array global.

 global cmds

 #

 # Main program.

 #

 # Set window manager values.

 wm geometry . +0-0

 wm overrideredirect . true

 #

 # Frame to hold everything.

 #

 set back lightgray

 frame .frame -relief raised -bd 2 -bg $back

 .frame config -cursor top_left_arrow

 #

 # Logo/Name widget.

 #

 set title [format "Linux: %s" [exec hostname]]

 button .frame.logo -text $title \

 -command { exit } -bg $back \

 -relief flat -padx 8

 pack .frame.logo -side left -fill y

 #

 # Create other widgets

 # that make up our toolbar.

 #

 button .frame.man -text "Manuals" \

 -command { exec_cmd $cmds(man) } \

 -relief flat -padx 8 -bg $back

 button .frame.mail -text "Mail" \

 -command { exec_cmd $cmds(mail) } \

 -relief flat -padx 8 -bg $back

 button .frame.term -text "Shell" \

 -command { exec_cmd $cmds(term) } \

 -relief flat -padx 8 -bg $back

 button .frame.file -text "File Manager" \

 -command { exec_cmd $cmds(file) } \

 -relief flat -padx 8 -bg $back

 button .frame.xv -text "Images" \

 -command { exec_cmd $cmds(xv) } \

 -relief flat -padx 8 -bg $back

 button .frame.xmah -text "Mahjongg" \

 -command { exec_cmd $cmds(xmah) } \

 -relief flat -padx 8 -bg $back

 # Pack all the buttons, in order.

 pack .frame.man .frame.mail \

 .frame.term .frame.file \

 .frame.xv .frame.xmah \

 -side left -fill y

 # Set up timer label.

 label .frame.time -bg $back

 update_time .frame.time

 pack .frame.time -side left -fill y

 pack .frame

 # toolbar.tcl

You can easily add your own commands, with three easy steps:

1. At the set cmds area, add your new UNIX command.
2. At the button area, copy one of the button commands to create your own. You need to change
the button’s name to frame.yourname or something like that. Also, ensure that it uses your
command from the set cmds area.
3. At the pack command right after the button area, add the name of your new button.

You can use these two scripts as examples to get you started scripting Tcl applications. One of the
handiest parts of Tcl is that it’s supported on Windows and Macintosh systems. There’s a number of
books available on Tcl, including Graphical Applications with Tcl and Tk; see Appendix A for details.

Previous Table of Contents Next

-->

Previous Table of Contents Next

Perl

Perl is a freeware scripting language developed to handle a number of system administration tasks. Perl
stands for Practical Extraction and Report Language. The whole point of the language is to make it
easier for you to extract data from UNIX and output reports on things such as Usenet news disk usage
and a list of all users on your systems, sorted in order of largest disk usage. (Perl tends to excel at tasks
that revolve around reporting system information.)

To make sure you’ve installed perl when you install Linux, type in the following:

 gilbert:/$ perl -v

If you have perl on your system, you should see the version number for perl. If not, you need to run the
setup program again. (The setup program installs Perl 5.002.)

A First Perl Script

Perl, like most Tcl and other UNIX scripting languages, uses the # as a comment marker. Any line with
is ignored from the # onward. To print data in a perl script, use the print statement:

 #! /usr/bin/perl

 print "Linux runs perl!\n";

 print "Oh, joy!\n";

When you run this script, you’ll see the following output, as you’d expect:

 Linux runs perl!

 Oh, joy!

The \n stands for a new line, or linefeed character, and is typical UNIX parlance as we described in the
section on C programming.

You can also prompt for data in Perl, using the following odd syntax:

 #! /usr/bin/perl

 # Prompting for input in perl.

 print "What is your first name: ";

 # <STDIN> stands for standard input: the keyboard.

 $first_name = <STDIN>;

 # Remove trailing linefeed.

 chomp($first_name);

 printf "What is your last name: ";

 $last_name = <STDIN>;

 chomp($last_name);

 print "Your name is $first_name $last_name.\n";

When you run this script, you’ll see the following prompts:

 What is your first name: Eric

 What is your last name: Johnson

 Your name is Eric Johnson.

Perl provides a lot of support for arrays, UNIX process control, and string handling. Perl offers a string
set of array operations, which allow you to have a set of data treated as one unit, for example:

 (1,2,3,4,5,6)

This array has the values 1 through 6. You can also mix text and numeric values, as shown here:

 (1, 2, 3, 4, "Linux is out the door")

You can assign this array to a variable and then access any element in the array. A great strength of perl
is its associative arrays, where you can use a key value for an array index and associate this with a data
value. For example, you can have a perl array for a first name, last name, and street address. You could
then access the street address as shown here:

 #! /usr/bin/perl

 # Associative arrays in perl.

 # zippy is an associative array.

 $zippy{"firstname"} = "Zippy";

 $zippy{"address"} = "1600 Pennsylvania Ave.";

 # Print the data.

 print $zippy{"firstname"};

 print "'s address is ";

 print $zippy{"address"};

 # End with a carriage return.

 print "\n";

This example stores a first name and an address in the associative array named zippy. Associative arrays
form a very powerful feature and can be used effectively in a lot of system administration tasks.

The output of the preceding script looks something like the following (and predicts the results of the
next election):

 Zippy's address is 1600 Pennsylvania Av.

In addition to associative arrays, perl has a lot of commands to format text to allow you to create reports
(the original reason for perl’s existence). perl is intimately tied in with UNIX and provides a number of
shortcuts for common UNIX activities, like accessing the password file, as we show here:

 #! /usr/bin/perl

 # Accessing the password file.

 # Get Eric's password entry and print it.

 @erc_entry = getpwnam("erc");

 ($username, $realname, $homedir) = @erc_entry[0,6,7];

 print "User $realname has";

 print " a home directory of $homedir";

 print " and a username of $username.\n";

When you run this script, you’ll see output like the following:

 User Eric F. Johnson has a home directory of /home/erc

 and a username of erc.

Naturally, you’ll want to use a username available on your system.

There’s a lot more to perl, which fills more than one book on the subject. If you’re interested in learning
more about perl, see Appendix A.

Previous Table of Contents Next

-->

Previous Table of Contents Next

Gawk

Developed by three Bell Labs researchers (Alfred Aho, Peter Weinberger, and Brian Kernighan—hence
the acronym awk), awk is a programming language (with some strong similarities to the C programming
language, discussed earlier in this chapter) but is used in much the same manner as other UNIX scripting
tools. Hence its inclusion in this chapter.

Technically speaking, awk doesn’t ship with Linux; instead, the GNU version, gawk, ships with Linux.
(By now you shouldn’t be surprised that Linux features software from the GNU Project.) Because gawk
is virtually identical to other implementations of awk (there are a few extensions to awk in gawk, but
you can ignore them if you choose), most users with experience with awk will have no problems with
awk.

Gawk’s primary value is in the manipulation of structured text files, where information is stored in
columnar form and is separated by consistent characters (such as tabs or spaces). Gawk takes these
structured files and manipulates them through editing, sorting, and searching.

Let’s use a data file named workers as an example:

 Eric 286 555-6674 erc 8

 Geisha 280 555-4221 geisha 10

 Kevin 279 555-1112 kevin 2

 Tom 284 555-2121 spike 12

Let’s sink into the trap of abstraction for a minute and compare our example file output to a two-
dimensional graph. Each row across is called a record, which in turn is made up of vertical fields or
columns, almost like a database. Gawk allows us to manipulate the data in the file by either row or
column. Using the gawk command is not a complicated process. The structure of the gawk command
looks like:

 $ gawk [option] ‘pattern {action}'

(The only options available with gawk are -F, which allows you to specify a field separator other than
the default of white space; -f, which allows you to specify a filename full of gawk commands instead of
placing a complex pattern and action on the Linux command line, and -W, which runs gawk in total
compatibility with awk.) Here we should define our terms. A pattern can be an ASCII string (which
gawk treats numerically; instead of seeing the character e as an e, it sees it as the ASCII equivalent), a
numeral, a combination of numerals, or a wildcard, while action refers to an instruction we provide.
Essentially, gawk works by having us tell it to search for a particular pattern; when it has found that
pattern, gawk is to do something with it, such as printing the pattern to another file.

The simplest gawk program merely prints out all lines in the file:

 gilbert:/$ gawk '{ print }' workers

 Eric 286 555-6674 erc 8

 Geisha 280 555-4221 geisha 10

 Kevin 279 555-1112 kevin 2

 Tom 284 555-2121 spike 12

Continuing our example, let’s say we wanted to pull all records that began with the string geisha. We’d
use the following:

 gilbert:/$ gawk '$1 ~ /Geisha/ {print $0}' workers

Here’s what the command means, part by part:

• $1: Tells gawk to use the first column for the basis of further action. gawk will perform some
action on a file based on either records or fields; a number beginning with a $ tells gawk to work
on a specific field. In this case, $1 refers to the first field.
• ~: Tells gawk to match the following string.
• /Geisha/: The string to search for.
• {print $0}: Tells gawk to print out the entire record containing the matched string. A special
use of the $ sign is with the character 0, which tells gawk to use all the fields possible.
• workers: The file to use.

In our case, gawk would print the following to the screen:

 Geisha 280 555-4221 geisha 10

Not every action has to be the result of matching a specific pattern, of course. In gawk, the tilde (~) acts
as a relational operator, which sets forth a condition for gawk to use. There are a number of other
relational operators available to gawk users that allow gawk to compare two patterns. (The relational
operators are based on algebraic notation.) Gawk supports the same relational operators found in the C
programming language; they are listed in Table 10.7.

Table 10.7Gawk Relational Operators

Operator Meaning Usage

< Less than $1 < "Eric" returns every pattern with an
ASCII value less than “Eric”.

<= Less than or equal to $1 <= "Eric".

== Equals $1 == "Eric" returns every instance of “Eric”.

!= Does not equal $1 != "Eric" returns every field not
containing the string “Eric”.

>= Greater than or equal to $1 >= "Eric" returns every field equal to or
greater than “Eric”.

> Greater than $1 > "Eric" returns every field greater
than “Eric.”

Previous Table of Contents Next

-->

Previous Table of Contents Next

We could increase the sophistication of gawk searches in a number of ways. Firstly, we could
incorporate the use of compound searches, which use three logical operators:

• &&, which works the same as the logical AND
• ||, which works the same as the logical OR
• !, which returns anything NOT equaling the original

For example, let’s say we wanted to know how many workers had a value in the fifth field that is greater
than or equal to 10:

 gilbert:/$ gawk '$5 >= 10 { print $0 } ' workers

 Geisha 280 555-4221 geisha 10

 Tom 284 555-2121 spike 12

We can also combine tests, to print out, for example, all workers who have the fifth field less than 10
and the second field greater than 280:

 gilbert:/$ gawk '$5 < 10 && $2 > 280 { print $0 } ' workers

 Eric 286 555-6674 erc 8

While these examples are obviously contrived, you can use gawk to help pull out all entries that share
certain postal (ZIP) codes or all employees who have a salary in a certain range. We’re just scratching
the surface with gawk.

gawk can also be used to return entire sections of data, as long as you can specify patterns that begin and
end the section. To return the records of Eric and Kevin and all between, use the following:

 gilbert:/$ gawk '$1 ~ /Eric/,/Kevin/ {print $0}' workers

 Eric 286 555-6674 erc 8

 Geisha 280 555-4221 geisha 10

 Kevin 279 555-1112 kevin 2

If we don’t want to print the whole record, we can print just a few of the fields, as in the following
example, which prints out fields 2 and 1:

 gilbert:/$ gawk '$1 ~ /Eric/,/Kevin/ {print $2, $1}' workers

 286 Eric

 280 Geisha

 279 Kevin

As with other UNIX commands, gawk can be used in pipes, and its output can be directed to other files
or directly to the printer. For example, if we were looking through a large file and expecting many
matches to a particular string (such as salary ranges or employment starting dates), we might want to
direct that output to a file or to a printer.

To use gawk with the Linux sort utility, we can sort the output of the last example:

 gilbert:/$ gawk '$1 ~ /Eric/,/Kevin/ {print $2, $1}' workers |
sort

 279 Kevin

 280 Geisha

 286 Eric

(Please note that this is sorting on the leading number.)

Gawk also provides some summary abilities. The NR symbol in a gawk command returns the number of
records, for example.

We can combine this with gawk’s ability to total fields in an gawk program.

Gawk Programs

You’re not limited to what fits on the command line with gawk. You can also store a series of gawk
commands in a file and then use gawk to execute the file.

For example, we can store our simplest gawk command, {print}, in a separate file and use the following
gawk command:

 gilbert:/$ gawk -f gawk.1 workers

 Eric 286 555-6674 erc 8

 Geisha 280 555-4221 geisha 10

 Kevin 279 555-1112 kevin 2

 Tom 284 555-2121 spike 12

In this case, we’re assuming that the file gawk.1 contains our very simple gawk program:

 { print }

You can combine this with the gawk BEGIN, END, and NR commands to make a more complex gawk
program. When working with this, it’s good to remember that gawk applies each gawk command to
every record, that is, every line of text, in the input file. A commandlike {print} says that each line in
the input file should be printed.

The gawk BEGIN command lists what to do before reading each line of text. For example:

 BEGIN { print "Workers for Spacely Sprockets"; print "" }

 { print }

Previous Table of Contents Next

-->

Previous Table of Contents Next

The preceding gawk program will print out the text “Workers for Spacely Sprockets” before printing
each line in the workers file. One the command line, this will look like the following (if we stored the
preceding gawk program in a file named gawk.2):

 gilbert:/$ gawk -f gawk.2 workers

 Workers for Spacely Sprockets

 Eric 286 555-6674 erc 8

 Geisha 280 555-4221 geisha 10

 Kevin 279 555-1112 kevin 2

 Tom 284 555-2121 spike 12

The print "" prints a blank line.

The END statement similarly lists commands to execute after all data is read. Here’s where the NR
command, number of records (or lines), comes in handy, as in the following example:

 BEGIN { print "Workers for Spacely Sprockets"; print "" }

 { print }

 END { print "There are ",

 NR,

 " employees left after the latest wave of layoffs." }

This example uses cleaner formatting for the END statements. It would make no difference in the output
if we had instead placed the entire END command on one line. We can name this file gawk.3 and then
execute the following command:

 gilbert:/$ gawk -f gawk.3 workers

 Workers for Spacely Sprockets

 Eric 286 555-6674 erc 8

 Geisha 280 555-4221 geisha 10

 Kevin 279 555-1112 kevin 2

 Tom 284 555-2121 spike 12

 There are 4 employees left after the latest wave of
layoffs.

This brief explanation covers gawk in the simplest terms. For example, gawk includes most of the
trappings of a full programming language, including loops, variables, string operations, numeric
operations, and the creation and manipulation of arrays. If you’re interested in a useful programming
language that can be mastered relatively quickly, we recommend further reading on gawk; our
recommendations can be found in Appendix A.

Summary

We realize that many of you are potential and practicing programmers, so we spent a great deal of space
on the many programming tools available with Linux. Even so, we’ve barely touched the surface of the
Linux programming environment, for both traditional character-based programs and those running under
the X Window System.

The chapter began with a discussion of the GNU C compiler, gcc, which ships with Linux. With gcc,
you can create and compile C, C++, and Objective-C programs, as explained in this chapter. You
learned about compiling the long way and the short way, using the make command.

The chapter then discussed programming under the X Window System and the programming libraries
you’ll need. A freeware library called LessTif acts as a substitute for the commercial Motif
programming libraries. While LessTif is clearly a work in progress, it’s interesting enough for us to
include on the second accompanying CD-ROM—and it should be interesting enough for you to look at
if you’re at all interested in Motif programming.

In addition, you learned about the imake command, which is used by many X Window applications for
compiling on various operating systems.

The Tcl/Tk combination allows you to create Motif-like interfaces through the use of a relatively easy-to-
master scripting language. We provided an example script that throws a toolbar on the screen.

Perl is a hot scripting language, made hotter by its widespread use on the Internet. But you should be
able to take advantage of its many uses, even if you never go near the Internet.

In what should come as a shock to no one, Linux features yet another command from the GNU Project,
gawk, which is the functional equivalent of the awk programming language. Gawk works best on
structured commands, although it does have extended programming capabilities.

Previous Table of Contents Next

-->

Table of Contents

Appendix A
For More Information

In all likelihood, this book will only be the beginning of your Linux voyage. You’ll find that there’s a
sea of Linux information available—both on the Internet and in the print world. Your job will be to keep
your head above water as you dive into these resources. Our emphasis here will be on Internet resources,
because they are the ones you’ll find most useful.

Internet Resources

Linux is a big topic on the Internet; a recent search on the Alta Vista search engine yielded 200,000 Web
pages that mention Linux somewhere. Even when discarding the Web pages created by undergraduates
who tinker a little with Linux, you’re left with an amazing number of Web pages that cover Linux in
some depth.

We’ve done a little editing for you and compiled this assortment of interesting Linux-related Web pages.
Naturally—this being the World Wide Web and all—most of these pages spend a lot of time pointing
you to other Web pages, which in turn point you to even more Web pages. Still, by beginning with these
pages, you can significantly expand your Linux expertise.

The Linux Documentation Project

http://sunsite.unc.edu/mdw/linux.html

The home page of the Linux Documentation Project is an important source of Linux information and
archived software; virtually any aspect of Linux usage and configuration can be found here. This is a
page to be placed prominently in your Web browser’s bookmarks list. You can search through the Linux
Documentation Archives by connecting to http://sunsite.unc.edu/architext/AT-Linuxquery.html or http://
amelia.db.erau.edu/Harvest/brokers/LDP/query.html.

Linux.Org

http://www.Linux.org/

Linux.org is a user-driven group dedicated to—surprise!—Linux.

http://www.linux.org/

Walnut Creek CD-ROM

http://www.cdrom.com

This is the online repository of Slackware; you can grab updated versions of Slackware from here.

The Linux Applications and Utilities Page

http://www.xnet.com/~blatura/linapps.shtml

Bill Latura maintains this excellent list of Linux applications and utilities. Unlike the Linux Software
Map (see below), the applications are listed by category, making it much easier for browsing.

The Linux Software Map

http://www.boutell.com/lsm/

This site attempts to match your software needs with what’s available in the Linux world.

The Linux FAQ

http://www.cl.cam.ac.uk/users/iwj10/linux-faq/

This site contains the most up-to-date version of the Linux Frequently Asked Questions (FAQ).

The Linux Configuration Page

http://www.hal-pc.org/~davidl/linux/linux.config.html

This page combines installation and configuration tips from a wide variety of users. These are the folks
who have successfully installed and configured Linux on a vast assortment of PCs, and if you’re having
trouble with Linux on your no-name clone, you may want to check to see if someone else hasn’t already
invented that wheel.

The Linux Laptop Page

http://www.cs.utexas.edu/users/kharker/linux-laptop/

This page is similar to the Linux Configuration Page; it takes the experiences of many users and
condenses them into a very useful guide to installing Linux on a wide variety of machines. Because it’s a

http://www.cdrom.com/
http://www.xnet.com/~blatura/linapps.shtml
http://www.boutell.com/lsm/
http://www.cl.cam.ac.uk/users/iwj10/linux-faq/
http://www.hal-pc.org/~davidl/linux/linux.config.html
http://www.cs.utexas.edu/users/kharker/linux-laptop/

little harder to get hardware information about a laptop (i.e., what chipset is used for graphics) and some
of the laptop components can be, well, a little fussy (check out the following Web listing), this page is
essential for anyone wanting to run Linux on their laptop. Of similar interest is the Linux and X Window
on Notebook Computers home page (http://www.castle.net/X-notebook/index_linux.html).

Linux PCMCIA Information

http://hyper.stanford.edu/~dhinds/pcmcia/pcmcia.html

Dave Hinds is a virtual god in the Linux community. Why? Because he’s taken on the topic of making
Linux work with PCMCIA ports, which are found mostly on laptops. PCMCIA ports are for those credit-
card-type adapters (such as Ethernet and modem), and even in the mainstream community PCMCIA
support isn’t all it should be. Still, thanks to Hinds’ Card Services for Linux, you can generally make a
PCMCIA port work. We’ve included Card Services for Linux on the accompanying slackware CD-
ROM; here’s where you can go for more information.

The XFree86 Project

http://www.XFree86.org/

When you installed X Window on your Linux installation, you were really using XFree86, a version of
X Window optimized specifically for the Intel architecture. This is the home page of the effort.

If there’s one thing about the Web, it’s always changing. If you want to generate a more current list of
Linux-related home pages, check out the Alta Vista Home Page (http://alta.vista.com). Alta Vista is a
searchable database of Web pages across the world.

Slackware Mirrors

The Slackware distribution of Linux is maintained at the ftp.cdrom.com site, in /pub/linux/slackware.
At this site, you can grab the latest version of Slackware (although you shouldn’t do this too often; you
should upgrade in response to specific needs, not just as a general practice).

This is a busy site, however, so you may want to check out a mirror site. A mirror site contains the same
Linux files as does the ftp.cdrom.com site, and they’re updated regularly. In addition, as a good Internet
citizen you should use the FTP site closest to you, keeping in mind that most of these sites are
maintained for the use of local users, not global Internet users. (By the way, ftp.cdrom.com is in
California.)

Table A.1 lists the sites known to mirror the Slackware Linux release.

http://www.castle.net/x-notebook/index_linux.html
http://www.xfree86.org/

Table A.1Slackware Linux Mirrors

Country Site Directory

United States ftp.cdrom.com /pub/linux/slackware

uiarchive.cso.uiuc.edu /pub/systems/linux/distributions/slackware

tsx-11.mit.edu /pub/linux/distributions/slackware

ftp.cps.cmich.edu /pub/linux/packages/slackware

sunsite.unc.edu /pub/Linux/distributions/slackware

ftp.rge.com /pub/systems/linux/slackware/

ftp.cs.columbia.edu /archives/linux/Slackware

ftp.ccs.neu.edu /pub/os/linux/slackware

Australia ftp.monash.edu.au /pub/linux/distributions/slackware

Brazil farofa.ime.usp.br /pub/linux/slackware

Canada ftp.ECE.Concordia.CA /pub/os/linux/dist/slackware

pcdepot.uwaterloo.ca /linux/slackware

Chile ftp.ing.puc.cl /pub/linux/slackware

ftp.dcc.uchile.cl /linux/slackware

ftp.inf.utfsm.cl /pub/Linux/Slackware

Czech Republic vcdec.cvut.cz /pub/linux/local

Denmark ftp.dd.dk /pub/linux/dist/slackware

Finland ftp.funet.fi /pub/OS/Linux/images/Slackware

France ftp.ibp.fr /pub/linux/distributions/slackware

ftp.irisa.fr /pub/mirrors/linux

Germany ftp.uni-trier.de /pub/unix/systems/linux/slackware

Hong Kong ftp.cs.cuhk.hk /pub/linux/slackware

Hungary ftp.kfki.hu /pub/linux/distributions/slackware

Japan ftp.cs.titech.ac.jp /pub/os/linux/slackware

Mexico ftp.nuclecu.unam.mx /linux/slackware

The Netherlands ftp.leidenuniv.nl /pub/linux/slackware

ftp.twi.tudelft.nl /pub/Linux/slackware

Norway ftp.nvg.unit.no /pub/linux/slackware

Portugal ftp.di.fc.ul.pt /pub/Linux/Slackware

ftp.ncc.up.pt /pub/Linux/slackware

South Africa ftp.sun.ac.za /pub/linux/distributions/Slackware

Spain luna.gui.uva.es /pub/linux.new/slackware

ftp.uniovi.es /pub/slackware

Switzerland nic.switch.ch /mirror/linux/sunsite/distributions/slackware

Taiwan NCTUCCCA.edu.tw /Operating-Systems/Linux/Slackware

United Kingdom src.doc.ic.ac.uk /packages/linux/slackware-mirror

Usenet Newsgroups

The Usenet newsgroups listed in Table A.2 are devoted to the Linux operating system.

Table A.2Usenet Newsgroups Related to Linux

Newsgroup Topic

comp.os.linux.advocacy Linux is the greatest thing since sliced bread.

comp.os.linux.announce News deemed to be of importance to the Linux
community.

comp.os.linux.answers Various “official” documents about Linux (FAQs,
HOWTOs, READMEs, etc.).

comp.os.linux.development.apps Developing Linux applications.

comp.os.linux.development.system Discussion of developing modules and
components specifically for Linux.

comp.os.linux.hardware How to make Linux work with your NoName Inc.
clone.

comp.os.linux.m68k Porting Linux to Motorola-based computers
(Amiga, Atari, et al.).

comp.os.linux.misc Topics that don’t fit within the other Linux
newsgroups.

comp.os.linux.networking Linux networking.

comp.os.linux.setup Installing and configuring Linux.

comp.os.linux.x Making XFree86 and X Window work under
Linux.

Other Linux Implementations

Most Linux users work on a PC—after all, that’s one of the big appeals of Linux. However, Linux has
been ported to several other computer architectures, and more efforts are underway. In Table A.3, we list

the port and the home page where you can find more information.

Table A.3Linux Implementations on Non-PC Architectures

Project Home Page

Alpha http://www.azstarnet.com/~axplinux/

Acorn http://www.ph.kcl.ac.uk/~amb/linux.html

ARM Linux http://whirligig.ecs.soton.ac.uk/~rmk92/armlinux.html

Fujitsu AP1000+ http://cap.anu.edu.au/cap/projects/linux/

Linux/68k http://www-users.informatik.rwth-aachen.de/~hn/linux68k.html

Linux/8086 http://www.linux.org.uk/Linux8086.html

Linux/PowerPC http://www.linuxppc.org/

MkLinux http://nucleus.ibg.uu.se/macunix/

MIPS http://lena.fnet.fr/

SPARC Linux http://www.geog.ubc.ca/sparclinux.html

Books

This book focused on the Slackware distribution of Linux on the accompanying CD-ROM. Should you
wander away from this distribution, you may want to check out alternative sources of Linux information.
Also, because this book doesn’t cover the UNIX operating system or the X Window System in any
depth (it takes entire forests to cover these topics in any depth), you may want to look for another UNIX/
X book or two. The following list should fill most of your needs.

Other Linux Books

Running Linux, Matt Welsh and Lar Kaufman, O’Reilly & Assoc., 1995. This nonspecific Linux primer
covers both Linux and some general UNIX commands. It’s not tied to any specific distribution of Linux,
so some of the information won’t apply to the accompanying CD-ROMs. Welsh deals with some
advanced topics not covered in this book.

Linux Network Administrator’s Guide, Olaf Kirch, SSC, 1994. This technical overview of Linux
networking should cover whatever you need to know about Linux on a network. Although this book is
written from the viewpoint of a technically sophisticated user, it’s useful for anyone who needs to deal
with Linux on the network.

The MIS:Press Slackware Series features other books on Linux topics including: The Linux Database

http://www.azstarnet.com/~axplinux/
http://www.ph.kcl.ac.uk/~amb/linux.html
http://whirligig.ecs.soton.ac.uk/~rmk92/armlinux.html
http://www.linux.org.uk/linux8086.html
http://www.linuxppc.org/
http://nucleus.ibg.uu.se/macunix/
http://lena.fnet.fr/
http://www.geog.ubc.ca/sparclinux.html

(by Fred Butzen and Dorothy Forbes); The Linux Internet Server (by Kevin Reichard); Linux
Programming (by Volkerding, Foster-Johnson, and Reichard); and Linux in Plain English (by
Volkerding and Reichard).

UNIX Books

teach yourself . . . UNIX, Third Edition, Kevin Reichard and Eric F. Johnson, MIS:Press, 1995. OK, so
we’re biased. This book provides an overview of the UNIX operating system, with topics ranging from
system configurations and shell scripts to the Internet. Some computer experience is assumed.

UNIX in Plain English, Second Edition, Kevin Reichard and Eric F. Johnson, MIS:Press, 1994. This
book covers the major commands in the UNIX command set—and most of the information should be
directly applicable to Linux.

UNIX Fundamentals: The Basics, Kevin Reichard, MIS:Press, 1994. This book is for the true UNIX
neophyte, who knows little or nothing about UNIX—or computing, for that matter. It’s part of a four-
book series covering UNIX fundamentals (the other titles are UNIX Fundamentals: UNIX for DOS and
Windows Users; UNIX Fundamentals: Communications and Networking; and UNIX Fundamentals:
Shareware and Freeware).

Programming Books

Al Stevens Teaches C, Al Stevens, MIS:Press, 1994. Provides a beginner’s introduction to C
programming and goes far beyond the brief introduction found in Chapter 10.

Graphical Applications with Tcl and Tk, Eric F. Johnson, M&T Books, 1996. This book covers Tcl
scripting on UNIX, Linux,. and Windows. You can create a lot of neat applications with very little effort
using Tcl.

Cross-Platform Perl, Eric F. Johnson, M&T Books, 1996. While the syntax may appear to have come
from someone who’s possessed, Perl provides many useful capabilities for system administrators and
Web page developers.

X Window Books

The UNIX System Administrator’s Guide to X, Eric F. Johnson and Kevin Reichard, M&T Books, 1994.
This books focuses on topics related to UNIX and X, including configuration and usage. There’s also
some information about XFree86. An accompanying CD-ROM contains all the UNIX/X freeware
detailed in the book.

Using X, Eric F. Johnson and Kevin Reichard, MIS:Press, 1992. This book covers X from the user’s
point of view, covering both usage and configuration issues.

Motif Books

Power Programming Motif, Eric F. Johnson and Kevin Reichard, M&T Books, 1994. This second
edition covers OSF/Motif programming through version 1.2.

PC Configuration Books

IRQ, DMA & I/O: Resolving and Preventing PC System Conflicts, Jim Aspinwall, MIS:Press, 1995
(second edition in preparation).

Magazines

If you’re at all serious about your Linux usage, you’ll want to check out Linux Journal (SSC, 8618
Roosevelt Way NE, Seattle, WA 98115-3097; (206) 782-7733; $19 per year; http://www.ssc.com;
subs@ssc.com). This monthly magazine covers the Linux scene, offering practical tips and profiles of
the many interesting people in the Linux community.

The number of UNIX-specific magazines has fallen in recent years (a trend, admittedly, that baffles us).
UNIX Review is our favorite, if only because two-thirds of the writing team contribute a monthly X
Window column.

OSF/Motif and Linux

OSF/Motif, as licensed from the Open Software Foundation, is commercial software. OSF/Motif is
actually many things, including a style guide, a window manager, and a set of programming libraries.

Because OSF/Motif is licensed commercial software, it’s not included on the accompanying CD-ROMs.
(Because OSF/Motif is beginning to be a prerequisite for any serious commercial UNIX development,
you may at some time need to find OSF/Motif for your Linux system, if you’re looking at any
professional installations).

MetroLink (4711 N. Powerline Rd., Fort Lauderdale, FL 33309; (305) 938-0283; http://www.metrolink.
com; sales@metrolink.com) offers OSF/Motif for Linux.

Linux HOWTO

The collective wisdom of the Linux community has been distilled into a series of text documents, called
HOWTO, that describe various portions of the Linux operating system. We’ve included the latest version
of these documents on the first accompanying CD-ROM (in the /docs directory), but if they don’t
answer your questions, you may want to see if a more recent version is available via the Internet. You

http://www.ssc.com/
http://www.metrolink.com/
http://www.metrolink.com/

can find them in many sites, but the official repository of these documents is at sunsite.unc.edu, in the /
pub/Linux/docs/HOWTO directory.

Table of Contents

-->

Table of Contents

Appendix B
XFree86 and Extensions

This appendix covers a frequently asked question about X on Linux: Linux doesn’t support an X
program that requires a specific X extension, so how do you get an X installation to run these programs?
For example, XFree86 does not come configured to run three-dimensional graphics programs requiring
the PEX extension.

We’ll show you how to reconfigure your X server, extending it for these new needs. We’ll show you
how to do this and we’ll discuss memory and performance trade-offs. We’ll focus on the 3-D PEX
extension, because it’s the most-requested X extension that XFree86 doesn’t support by default on
Linux. However, the principles described here can apply to any X extension not directly supported by
default in Linux.

What Is an X Extension?

An X extension is a piece of program code that extends the X server by adding some significant new
functionality missing from the core X protocol, such as direct support for 3-D graphics.

Each extension needs to modify the X server and come with a programmer’s library so that programs
can use the extension. Some of these extensions, such as Shape, are so standard that it’s hard to view
them as add-ons. The Shape extension, for example, allows you to have round (and other odd-shaped)
windows. The oclock program takes advantage of this, as we show in Figure B.1.

Figure B.1 Oclock using the Shape extension.

We list the most common X extensions in Table B.1.

Table B.1Common Extensions to X

javascript:displayWindow('images/apb-01.jpg',103,113)
javascript:displayWindow('images/apb-01.jpg',103,113)

Extension Usage

LBX Low-bandwidth (serial-line) X, removed from X11R6.1

MIT-SCREEN-SAVER Allows you to create your own screen savers

MIT-SHM MIT shared-memory Ximage extension

Shape Nonrectangular windows

X3D-PEX PHIGS 3-D extension to X

XTestExtension1 Testing

XIE X Image Extension

XInputExtension Adds new input devices, like digitizing tablets

XVideo Video extension

To see what X extensions your system supports, run the xdpyinfo program from within an xterm
window (you must be running X, of course). When you run xdpyinfo, you’ll see a lot of output
describing your X server. Part of that output will include a list of extensions, probably something like
the following:

 number of extensions: 10

 BIG-REQUESTS

 MIT-SCREEN-SAVER

 MIT-SHM

 MIT-SUNDRY-NONSTANDARD

 Multi-Buffering

 SHAPE

 SYNC

 XC-MISC

 XFree86-VidModeExtension

 XTEST

Our X server doesn’t support a lot of fun extensions, such as PEX.

What You Need to Extend X on Linux

Most of the time, you’ll install XFree86 (the implementation of X for Linux) in binary format (meaning
that you won’t compile a special version designed for your unique needs). Because of this, you need a
special package, called the X link kit, to extend the Linux X server. The link kit allows you to compile
and link a new X server. The version of XFree86 that ships with this book contains the link kit; to install
it, you’ll need to run the setup program again. One of the menu choices should cover the link kit.

If you don’t have this, you can get it over the Internet. Usually the file is called X312lkit.tgz or
something like that.

The link kit allows you to rebuild the X server, adding something new: the X extension you’d like to
add. You’ll also need the gcc C compiler (which comes with Linux if you choose to install it) and libgcc.
a, gcc’s standard C library. You should have installed both when you installed Linux. To see which
version of gcc you have, try entering the following command line:

 $ gcc -v

 Reading specs from /usr/lib/gcc-lib/i486-linux/2.7.2/specs

 gcc version 2.7.2

To really use PEX, you’ll need to load the PEX libraries, include files, and fonts at install time. The PEX
fonts, in /usr/lib/X11/fonts/PEX, are required to run most PEX programs.

In the next section, we’ll show how to use the link kit to rebuild the X server for PEX, the X extension
that supports three-dimensional graphics. These steps are basically the same for adding other X
extensions, such as XIE, the massive imaging extension. We chose PEX because we’ve seen quite a lot
of questions regarding this particular X extension. Three-dimensional graphics are becoming more and
more popular. The basic techniques, though, apply to any X extension you need to add.

NOTE: Once again, Linux can provide a nifty short cut here. Instead of rebuilding the X server,
PEX support can be loaded from a module. The main page for XF86Config has more information
about how to set this up.

Configuring the Server Build

Before you can build a new X server, you must edit a configuration file, xf86site.def, in the /usr/X11R6/
lib/Server/config/cf directory. In this directory, edit the xf86site.def file (always make a backup first).
In this file, you need to specify a number of things, including which X extensions to build (e.g., PEX),
and which X server to build, such as SuperVGA, XF86_SVGA, or S3 XF86_S3.

In Table B.2, we list the settings we’ve used successfully. Note that we disable the creation of most of
the X servers, because we only need the S3 and SVGA X servers. Because of this, you’ll likely want to
change our settings.

Table B.2Settings in the xf86site.def File

Setting Value Meaning

HasGcc YES Linux uses the gcc C compiler

HasGcc2 YES Linux uses gcc version 2.x

XF86SVGAServer YES Builds 256-color SVGA X server

XF86VGA16Server NO Builds 16-color VGA X server

XF86MonoServer NO Builds monochrome VGA X server

XF86S3Server YES Builds S3 X server

XF86Mach8Server NO Builds the Mach8 X server

XF86Mach32Server NO Builds the Mach32 X server

XF86Mach64Server NO Builds the Mach64 X server

XF86P9000Server NO Builds the P9000 X server

XF86AGXServer NO Builds the AGX X server

XF86W32Server NO Builds the ET4000/W32 X server

XF86I8514Server NO Builds the IBM 8514/A X server

XnestServer NO Builds the Xnest server

BuildPexExt YES Builds the PEX extension

BuildXIE NO Builds the XIE extension

BuildLBX NO Builds the Low Bandwidth X extension

BuildScreenSaverExt YES Builds screen saver extension

NOTE: With any X release, these settings may change and there may be many new ones. Use
Table B.2 as a guide, not as gospel. At this time, because you’re rebuilding the X server anyway,

you may also want to build in one of the other X extensions, such as LBX or XIE.

Most of the servers are turned on automatically. You can turn off what you don’t want. For each X
server, especially the SuperVGA ones, there is a list of drivers you can set. We always pick the defaults
and leave the settings (XF86SvgaDrivers, XF86Vga16Drivers, XF86Vga2Drivers, and
XF86MonoDrivers) alone.

If you build more than one X server, you need to uncomment the ServerToInstall line and put in the X
server you want installed with the symbolic link from X. Otherwise, the XF86_SVGA gets set up as the
default X server, X.

Comment out the XF86Contrib line to build all the contributed software.

Once you’ve set up the xf86site.def file, you’re ready to starting building a new X server.

Building a New X Server

As the root user, you should perform the following steps to build your new X server:

1. Back up your current X server.
2. Build all the Makefiles.
3. Make the new X servers.
4. Quit X.
5. Install the new X servers.
6. Ensure that /usr/X11R6/bin/X links to the proper X server.
7. Start X to verify that the new X server works.
8. Run xdpyinfo to see if the new X extensions are available.
9. Clean the /usr/X11R6/lib/Server directory with make clean.

Before you start, always back up your current X server. This is to allow you to continue processing in
case the new build fails. Then change back to the /usr/X11R6/lib/Server directory and build all the
Makefiles by running the following command:

 $./mkmf

All these commands must be run in the /usr/X11R6/lib/Server directory as the root user. This process
will take a while, as it runs makedepend on a number of files.

Once mkmf finishes successfully, run make:

 $ make

This builds the new X servers and will take even longer than the last step. Once you’ve built the new X
servers, you must ensure that X is stopped. It’s very convenient to su to the root user in one xterm
window and build the new X servers while you have all the other windows on your screen available for
your work—that’s what multitasking is all about. When you need to install the new X server, however,
you must ensure that X is stopped. So quit X in the usual way.

Then change back to the /usr/X11R6/lib/Server directory and run (again as root):

 $ make install

This will copy the new X servers to /usr/X11R6/bin and set up /usr/X11R6/bin/X as a link to the
default X server (the one you configured for this earlier). Double-check this essential link anyway and
ensure that /usr/X11R6/bin/X links to the proper X server (see Chapter 3 for more on this).

Now comes the fun part. Try to run X as a normal user (as yourself, not the root user), using startx. This
step is to ensure that X still works (presuming X worked before you did all this).

If you get X up and running (it came right up for us, so if it compiled and linked with no problems, this
step should be easy), then run xdpyinfo in an xterm window to see if the new X extensions are
available. The list should look something like the following:

 number of extensions: 11

 BIG-REQUESTS

 LBX

 MIT-SCREEN-SAVER

 MIT-SHM

 MIT-SUNDRY-NONSTANDARD

 Multi-Buffering

 SHAPE

 SYNC

 X3D-PEX

 XC-MISC

 XFree86-VidModeExtension

 XTEST

(Yes, we cheated and built the LBX extension at the same time we built PEX.)

Once you’re confident that everything is built up properly, run make clean in the /usr/X11R6/lib/
Server directory (again as root):

 $ make clean

This will get rid of all the .o files created when you built the X servers and free up a lot of wasted disk
space.

As a final test, you may want to run one of the PEX demo programs that comes with X (you may not
have loaded these programs, though), such as beach_ball.

Performance and Memory Issues

PEX consumes a lot of system resources, so don’t load this extension if you’re short on physical
memory. When we built PEX and LBX into a new X server, it grew quite a lot, from 1,351,712 bytes to
1,509,550 bytes on disk.

Because of this, you may not want to compile in PEX or XIE, two of the largest X servers. If you have a
low-memory system, then PEX or other large extensions like XIE (the X Image Extension) are simply
not for you.

Table of Contents

-->

Table of Contents

Index

3Com
Ethernet cards and Linux, 18, 19
ISDN modems and Linux, 21-22

A

A4 Tech AC scanners and Linux, 25
abuse command, 334
Accent multiport controllers and Linux, 19
Ada, 463
Adaptec, 12

ACB-40xx controllers and Linux, 13, 44
AHA-1505/1515 controllers and Linux, 12, 44
AHA-1510/152x controllers and Linux, 12, 44
AHA-154x controllers and Linux, 12, 44
AHA-174x controllers and Linux, 12, 44
AHA-274x controllers and Linux, 12, 44
AHA-284x controllers and Linux, 12, 44
AHA-2940.3940 controllers and Linux, 12, 44
and bootdisks, 44

adaptive technologies and Linux, 106-107
adduser command, 96-98, 348
Adlib sound boards and Linux, 22
Advance Logic chipsets and XFree86, 118
AdvanSys SCSI cards and Linux, 44
AIMS Labs RadioTrack FM radio card and Linux, 26
aliases, 245-246
Allied Telesis Ethernet cards and Linux, 17
Always

and bootdisks, 45
AL-500 controllers and Linux, 13
IN2000 controllers and Linux, 12

amateur-radio cards and Linux, 18, 107 see also individual card manufacturers
AMD

Ethernet cards and Linux, 17
processors and Linux, 7, 8

SCSI controllers and Linux, 13, 44
AMI Fast Disk controllers and Linux, 12
AMS laptops and Linux, 29
Analog Devices data-acquisition equipment and Linux, 26
Ansel Communications Ethernet cards and Linux, 17
APC SmartUPS and Linux, 25-26
Apple

Imagewriters and Linux, 24
Macintosh, 110, 111, 202, 297, 301
printers and Ghostscript, 286, 287

Apricot Ethernet cards and Linux, 17
ARCnet network cards and Linux, 18
Arena Web browser, 419
arithmetic command, 334
ARK Logic chipsets and XFree86, 118
ARM laptops and Linux, 29
Arnet multiport controllers and Linux, 19
ash shell, 76
AST

900N laptop and Linux, 35
laptops and Linux, 29
multiport controllers and Linux, 19

at command 362-363
ATI

chipsets and XFree86, 118, 119, 120
mouse and Linux, 23

AT-Lan-Tec/RealTec Ethernet cards and Linux, 17
ATM network adapters, 21
AT&T Ethernet cards and Linux, 17
Audio Excell sound boards and Linux, 22
Austin laptops and Linux, 29
awk language see gawk
Aztech CDA268 CD-ROM drives

and bootdisks, 44, 45, 47
and Linux, 16
sound boards and Linux, 22

B

backgammon command, 334
background commands, 241-242
bash shell, 76, 84, 204, 215, 237-248

aliases, 245-246

and background commands, 241-242
command history, 244-245
and dir command, 215
help, 247-248
minimal completion, 245
and multitasking, 241-242
pipes, 244
processes, 242
standard input and output, 242-244
and variables, 239-241

batch command, 363-364
bc command, 74, 332
bcd command, 334
Bell Technologies multiport controllers and Linux, 19
Bernoulli drives and Linux, 16, 26, 52
binutils utilities, 77
bison command, 74, 462-463
BIT laptops and Linux, 29
bitmap command, 318-319
BiTronics interface and Linux, 24
Boca multiport controllers and Linux, 19
bog command, 334
boot floppy, creating, 78-79
boot options, 355-356
bootdisks, 42-50, 356-357

booting Linux with, 60-62
creating, 42-48, 49, 50

Bourne Again Shell see bash
bowman window manager, 113
bus architectures, 7
BusLogic controllers

and bootdisks, 45
and Linux, 12, 13

byacc command, 74, 462

C

C programming language, 74 see also GNU C compiler
f2c utility, 74

Cabletron Ethernet cards and Linux, 18
caesar command, 335
cal command, 235
calculator command, 332

canfield command, 335
Canon

BubbleJet printers and Linux, 24
laptops and Linux, 29
printers and Ghostscript, 286, 287

Caravene laptops and Linux, 29
Cardinal DSP16 sound boards and Linux, 22
cat command, 221-223
cc command, 444-448 see also GNU C compiler
CDE/Motif see Motif
cd command, 203-206, 214
CD-ROM drives, 15-16 see also individual CD-ROM manufacturers
CED data-acquisition equipment and Linux, 26
Chicony laptops and Linux, 26
Chimera Web browser, 419
Chips & Technology (C&T)

chipsets and XFree86, 119
mouse and Linux, 23

chmod command, 210-211
chown command, 212-213, 348
Cirrus

chipsets and XFree86, 118, 119
PCMCIA controllers and Linux, 38

C.Itoh M8510 printer
and Ghostscript, 288
and Linux, 24

cjpeg command, 323
clisp command, 74
clocks, 324-325
CMD-640 controllers and Linux, 11
cnews command, 75
color_xterm shell program, 154
Combinet ISDN modems and Linux, 21
command history, 244-245
Common Desktop Environment (CDE), 110
Compaq, 5

chipsets and XFree86, 118
Concerto and Linux, 36
Contura Aero and Linux, 36
Deskpro XL and Linux, 27
laptops and Linux, 29-30

Compat laptops and Linux, 30
compress command, 298

Compressed Serial-Line Internet Protocol (CSLIP), 18, 405
Compudyne laptops and Linux, 30
Computone multiport controllers and Linux, 19
Comtrol multiport controllers and Linux, 19, 20
Conner, 21

CFP1060S drives and Linux, 12
Conrad TXC CD-ROM drives

and bootdisks, 44, 45, 47
and Linux, 16

controllers and Linux, 10 see also hard-drive controllers, SCSI
controllers
COREtape Light tape drives and Linux, 15
cp command, 225-227
Creative Labs cards

and bootdisks, 44, 46, 47
CD-ROMs, 15, 16
Sound Blaster sound boards and Linux, 22, 23
Sound Blaster 16 SCSI-2 controllers and Linux, 13

cribbage command, 335
cron command, 364-367
Crystal CS4232-based sound boards and Linux, 22
Cyclades multiport controllers and Linux, 19
CyCDROM drives and bootdisks, 44, 45, 47
Cyrillic, support for, 108
Cyrix processors and Linux, 7

D

Danish, support for, 108
data-acquisition equipment and Linux, 36 see also individual manufacturers
Databook PCMCIA controllers and Linux, 38
DBCC data-acquisition equipment and Linux, 26
dc command, 332
dd command, 375
DEC

Ethernet cards and Linux, 18
laptops and Linux, 30
printers and Ghostscript, 286, 287
printers and Linux, 24

deliver command, 75
Dell

laptops and Linux, 30
Latitude Xpi and Linux, 36

and mouse, 131
diald command, 407
Diehl ISDN modems and Linux, 21
DigiBoard

fax format and Ghostscript, 286
multiport controllers and Linux, 19, 20

Digicom modems and Linux, 20
dip command, 75, 405-406, 407
dir command, 215
directories, 202, 213-217
disk-doubling programs and Linux, 82
djpeg command, 323
D-Link Ethernet cards and Linux, 18
dll tools, 74
DOOM, 23, 335
dosemu emulator, 329-330
DPT

and bootdisks, 45
PM2001 controllers and Linux, 12
PM2012A controllers and Linux, 12-13
SmartCache controllers and Linux, 13

DTC
and bootdisks, 45
2278D controllers and Linux, 11
327x controllers and Linux, 13
328x controllers and Linux, 13
329x controllers and Linux, 13

DUAL laptops and Linux, 30

E

ECHO-PSS-based sound boards and Linux, 22
ed command, 274
editres command, 453-454
EDO RAM, 10
Efficient Networks ATM network adapters and Linux, 21
EISA bus, 7
electronic mail, 409-418
ELF files, 449-450
elm command, 75, 416-418
elvis text editor, 74, 76, 103, 248-254, 277 see also vi text editor and memory, 251-252

starting, 250
undoing, 253

emacs text editor, 74, 76, 77, 103, 106, 248, 258-271, 275, 277
and buffers, 266
and C, 259
choosing between versions, 77, 259
and commands, 260-261
creating files, 264-265
editing files, 264-265, 268-269
help, 266-267
and Lisp, 259, 263-264
and modes, 263-264
printing, 271
quitting, 271
searching and replacing, 270
spell checking, 270
and TeX, 259
undo command, 268

emacspeak program, 106
Emerald tape drives and Linux, 15
emulators, 328-331

Apple IIe, 329
Commodore 64/128/PET/VIC20, 329
C/PM, 328, 329
Macintosh, 328, 329
MC-68000, 329
MS-DOS, 328, 329
Windows, 328, 330-331
Z80, 329

Ensoniq SoundScape sound boards and Linux, 22
Epson

laptops and Linux, 22
printers and Ghostscript, 286, 287, 288
printers and Linux, 24
scanners and Linux, 25

EQL network connections, 18
error messages, 355
Escom laptops and Linux, 30
ESDI controllers, 11
Euro-ISDN modems and Linux, 21
ex command, 250

F

f2c utility, 74

factor command, 335
FAST video-capture boards and Linux, 25
fdformat command, 91, 92
fdisk command (Linux), 60, 62-64, 65, 66, 67, 69, 84, 94
FDISK command (MS-DOS), 54, 55, 56, 57, 58, 59
FGI/Holtek HT-6560B controllers and Linux, 11
files, 198-235

archiving, 297-318
command text files, 200
compressing, 297-218
copying, 225-226
creating, 222
data files, 200
directories, 201, 213
executable files, 200
finding, 231-233
hidden, 215
limits, 199
links, 201, 233-235
moving, 227-228
ordinary files, 200
permissions, 206-213
removing, 228-229
special device files, 201
sticky bit, 213
text files, 200
types, 200
viewing, 221-224

find command, 231-233
Finnish, support for, 108
FIPS program, 52-53
fish command, 335
flex command, 74, 462
flex++ command, 462
floppy drives, 14-15
floptical drives and Linux, 16, 26
FORMAT command, 54, 55, 59
fortune command, 336
Fortran programming language, 442, 463

f2c utility, 74
Frame Relay cards and Linux, 22
free command, 373-374
Free Software Foundation (FSF), 230, 258, 279, 280, 285

FreeBSD, 4
fsinfo command, 161
ftape support, 74
ftp command, 427-430
funzip command, 303
Future Domain

and bootdisks, 45, 46
TMC-16x0 controllers and Linux, 13
TMC-3260 controllers and Linux, 13
TMC-8xx controllers and Linux, 13
TMC-950 controllers and Linux, 13

fvwm window manager, 75, 112, 113, 114, 142, 143, 164-195
and colors, 166-167
configuring, 165
and fonts, 166-167
and Good Stuff, 168-169
and icons, 168
and Motif, 169-170
and virtual desktop, 168

fvwm-95 window manager, 75, 113, 331

G

games, 333-342
Gateway 2000

CD-ROM drives and Linux, 16
laptops and Linux, 30-31

gawk language, 477-483
gdb command, 74, 461
Genius scanners and Linux, 25
Genoa chipsets and XFree86, 119
German, support for, 108
German ISDN modems and Linux, 21
Ghostscript, 24, 74, 75, 254, 284-290

file formats, 289-290
ghostview command, 75, 285-286
GNU C compiler (GCC/C++), 74, 76, 442-449
GNU chess command, 75, 340
GNU xboard command, 75, 340
gnuplot command, 75
GoldStar TXC CD-ROM drives

and bootdisks, 44, 45, 47
and Linux, 16

gpm mouse server, 75
Gravis sound boards and Linux, 22
GRID laptops and Linux, 31
groff text processor, 74, 275-278

and man pages, 278
groups, 349-351
gunzip command, 298, 300-301
gzip (Linux), 298, 299-300, 303
GZIP.EXE command (MS-DOS), 85

H

ham radio and Linux, 108
hangman command, 336
HDLC board and Linux, 18
head command, 224
Hebrew, support for, 108
help, 247-248 see also online-manual pages
Hercules chipsets and XFree86, 130
Hewlett-Packard, 114

Colorado FC-10/FC-20 tape drives and Linux, 15
Colorado TC-15 tape drives and Linux, 15
Colorado Trakker tape drives and Linux, 15
Ethernet cards and Linux, 17, 18
LaserJet 4 printer and Linux, 24
Omnibook laptops and Linux, 36
printers and Ghostscript, 286, 287, 288
printers and Linux, 24
PCMCIA controllers and Linux, 38
scanners and Linux, 25

Highscreen laptops and Linux, 31
Hinds, David, 106
home directory, 203
hunt command, 336
Hyperdata laptops and Linux, 31
Hyundai

chipsets and XFree86, 120
PCMCIA controllers and Linux, 38

I

iBCS, xxiv

IBM, 114
chipsets and XFree86, 118
Ethernet cards and Linux, 18
Internal Tape Backup Unix tape drives and Linux, 15
laptops and Linux, 31
OS/2, 51, 53, 54, 55, 60, 65, 68, 69, 71, 72, 80, 81, 82, 301
PCMCIA controllers and Linux, 38
printers and Ghostscript, 287
printers and Linux, 24
PS/1, 7, 61
PS/2, 7, 131
PS/2 mouse and Linux, 23
ThinkPads and Linux, 36-37, 61, 123
Tropic-chipset Token-Ring cards and Linux, 18
ValuePoint, 7, 61

ICN ISDN modems and Linux, 21
ico command, 340
IDE controllers, 11, 44, 47

and bootdisks, 44, 47
IEEE-488 data-acquisition equipment and Linux, 26
IIT

chipsets and XFree86, 118, 120
processors and Linux, 7

Imagen
printers and Ghostscript, 287
printers and Linux, 24

imake command, 460-461
INSI laptops and Linux, 32
ImageNation video-capture boards and Linux, 25
init, 368-369
inn command, 75, 436
input command, 250
installation of Linux, 42-108

boot floppies, creating, 42-43, 49, 78
configuring, 78
disk sets, selecting, 73-78
DOS, booting from, 87-88
FIPS, using, 52-53
floppy disk, installing from, 82-83
hard disk, preparing, 51-52, 54-55
kernel, installing, 78
main partition, creating, 68-69
and OS/2 partitions, 69-70

root floppies, creating, 42-43, 48-49
and setup program, 70-71
source, selecting, 72-73
supported hardware, 44-46
swap space, setting up, 71
tape, installing from, 82-83
target, selecting, 71-72
Windows 95, booting from, 88-89

Intel, 7
Ethernet cards and Linux, 18
PCMCIA controllers and Linux, 38
Triton controllers and Linux, 11

Internet, 23, 59, 297, 298, 303, 401-438
I/O controllers and Linux, 17
Iomega

and bootdisks, 45
PC2/2B controllers and Linux, 38
Tape Controller II tape drives and Linux, 15

IPC laptops and Linux, 32
IRQ settings, 38
Irwin AX250L/Accutrak 250 tape drives and Linux, 15
ISA bus, 7
ISDN modems, 21 see also individual modem manufacturers
ISO-9660 filesystem and Linux, 16
ispell command, 74, 270

J

Java, 464
jed text editor, 74
Jetta laptops and Linux, 32
joe text editor, 74, 76, 273-274
jove text editor, 74, 76, 273
joysticks, 23
JPEG utilities, 322-323

K

Keithley data-acquisition equipment and Linux, 26
Kermit, 394
kernel

installing, 78, 87

modules, 99-101
recompiling, 90-92, 104-105

kill command, 371-372
Klingon language support, 279
Kotobuki CD-ROM drives

and bootdisks, 44, 46, 47
and Linux, 16

L

languages, support for others, 117 see also individual languages
laptops and Linux, 27-38, 122-123 see also individual models
LaTeX command, 279 see also TeX
ld command, 449-450
less command, 223-224
LessTif, 451-455
libc libraries, 77
libgr13 library, 75
libXpm library, 75
links, 233-235

symbolic, 234-235
Linux, 1-2, 3, 4-6, 7, 8, 9, 10, 11-12,

13, 14-15, 16, 17-19, 20, 21, 22, 23,
24, 25, 26, 27-35, 36, 37, 38-39, 41,
42, 43, 44, 46, 48, 49-50, 51-52, 53,
54, 55, 57, 59, 60, 61, 62, 63, 64,
65, 66, 67, 68-69, 70, 71, 72, 73,
74, 75, 76, 77, 78, 79, 80, 81, 82,
83, 84, 86, 87, 88, 89, 90, 91, 92,
93, 95, 96, 97, 98, 99, 100, 101,
102, 103, 104, 105, 106, 108, 109,
110, 111, 113, 114, 115, 117, 121,
122, 123, 129, 131, 132, 142, 148,
154, 155, 156, 157, 158, 164, 165,
192, 193, 197, 198, 199, 200, 201,
202, 203, 204, 205, 206, 207, 208,
213, 214, 215, 217, 219, 220, 221,
223, 225, 226, 227, 228, 229, 231-
232, 233, 234, 235, 236, 237, 238,
240, 241, 242, 245, 246, 247, 248,
249, 254, 255, 256, 258, 259, 261,
265, 266, 267, 268, 274, 275, 276,
279, 280, 284, 285, 286, 290, 292,

293, 295, 297, 298, 301, 303, 304,
305, 308, 309, 310, 311, 312, 333,
315, 316, 322, 324, 328, 329, 330,
331, 332, 333, 334, 335, 336, 339,
340, 342, 345, 346, 349, 350, 351,
352, 353, 355, 356, 357, 358, 359,
360, 361, 362, 367, 368, 370, 372,
373, 374, 375, 376, 377, 378, 379,
383, 384, 391, 392, 393, 394, 395,
396, 397, 399, 400, 401, 402, 403,
404, 405, 406, 407, 408, 409, 410,
416, 418, 419, 422, 423, 427, 432,
436, 437, 438, 441, 442, 443, 444,
445, 448, 449, 451, 452, 456, 461,
462, 463, 464, 477, 480, 483, 484,
485, 486, 487, 488, 489, 490, 491,
492, 494, 495, 497, 498 see also
Slackware
and amateur-radio card, 18, 108
and ATM network adapters, 21
and bus architectures, 7
and CD-ROM drives, 15-16
and controllers, 10
and data-acquisition equipment, 26
and disk-doubling programs, 82
disk sets, 74-75
emulators, 328-331
and filesystems, 198-199
and floppy drives, 14-15
and Frame Relay cards, 22
games, 333-342
and graphics cards, 10, 118, 137
and ham radio, 108
and hard-drive controllers, 11-12
and hard-drive names, 62-63
installation, 41-108
and the Internet, 401-438
and I/O controllers, 17
and ISDN modems, 21
and joysticks, 23
languages, support for other, 108
and laptops, 27-38
minimum hardware requirements, 6

and modems, 20, 79
and mouse, 23, 130-131
and multiport controllers, 19-20
and network cards, 17-19
and networking, 394-400
and passwords, 236-237
and PCMCIA devices, 37-38, 106
and plug and play, 6
and printers, 24, 103-104
and processors, 7
programming, 439-484
and RAM, 7-10
and removable drives, 17
and scanners, 24-25
and serial ports, 79
shutting down, 101-102
and sound boards, 22-23, 104-105
and swap partitions, 64-65, 71
system administration, 346
and tape drives, 15
telecommunications, 384-394
and touchpads, 23
and uninterruptible power supplies, 25-26, 106
upgrading, 92-95
and video-capture boards, 25
and Windows 95, 87-89
and XFree86, 78, 109-193

Linux Loader (LILO), 61, 69, 78, 80-81, 95, 355-357, 359-362
linuxinc package, 77
Lion laptops and Linux, 32
Lisp, 263-264, 463
lizards command, 336
LMS/Philips CD-ROM drives

and bootdisks, 44, 45, 47
CM 205/225/202 CD-ROM drives and Linux, 16
CM 206 CD-ROM drives and Linux, 16

ln command, 235
Loadlin, 43, 78, 87-88, 89-90, 105

installing without floppies, 89-90
and sound cards, 105
and Windows 95, 87, 88

Logitech
mouse and Linux, 23, 130

scanners and Linux, 25
sound boards and Linux, 22

Longshire CD-ROM drives
and bootdisks, 44, 46, 47
and Linux, 16

lpc command, 103, 254
lpd daemon, 103
lpq command, 255
lpr command, 103, 255
lprm command 255
ls command, 214-217

colors, changing 217
Lynx, 419

M

MacPerson laptops and Linux, 32
Magnavox laptops and Linux, 32
mailx command, 75, 410-416
make command, 74, 456-460
man pages see online-manual pages
Maralu chip-card reader and Linux, 26
math tools, 331-332
Matsushita CD-ROM drives

and bootdisks, 44, 45, 47
and Linux, 16

mattrib command, 317-318
Mattel Powerglove and Linux, 26
MCA bus, 7
mcd command, 313
mcopy command, 313-314
mdel command, 314
mdir command, 313
MediaTriX sound boards and Linux, 22
Media Vision

Pro Audio Spectrum 16 controllers and Linux,, 13, 46
sound boards and Linux, 22

message of the day, 378-379
messages file, 351-355
MFM controllers, 11

and bootdisks, 44, 47
mformat command, 316-317
mh command, 416

Micropolis drives and Linux, 12
Microsoft

mouse and Linux, 23, 130
MS-DOS, 7, 10, 12, 20, 42, 43, 48, 51, 53, 54, 55, 57, 59, 60, 65, 68, 71, 72, 80, 81, 82,
87, 88, 89, 93, 99, 110, 199, 202, 217, 301, 302, 312-318
sound boards and Linux, 22
Windows, 7, 10, 51, 53, 110, 111, 202, 298, 301
Windows 95, 51, 87, 88, 301
Windows NT, 110, 301

Midnight Commander, 76, 217, 292-294
and the mouse, 293
starting, 293-294

Midwest Micro laptops and Linux, 32
mille command, 336
minicom command, 389-392
minimal completion, 245
Mitsubishi

printers and Ghostscript, 286
printers and Linux, 24

Mitsumi CD-ROM drives
and bootdisks, 44, 45, 47
printers and Linux, 16

mkdir command (Linux), 220-221
MKDIR command (MS-DOS), 84-85
mkswap command, 67, 71, 84, 275-276
mlabel command, 317
mmd command, 315
modems, 20, 79 see also individual modem manufacturers
monop command, 336
more command, 223
morse command, 336
Motif, 110, 112, 114, 451-455, 465

and fvwm, 169-170
Motif window manager, 114

Motorola PCMCIA controllers and Linux, 38
mount command, 378-379
Mountain Mach-2 tape drives and Linux, 15
mouse, 23, 79, 130-133 see also individual mouse manufacturers

configuring, 79
and gpm mouse server, 75
and XFree86, 130-133

Mouse Systems mouse and Linux, 23
Moxa multiport controllers and Linux, 20

MPU-401 sound boards and Linux, 22
mread command, 315-316
mrd command, 315
mren command, 314
mt command, 310-312
Mtools, 312-318
mtype command, 324
MultiMouse mouse and Linux, 23
multiport controllers, 19-20 see also individual controller
manufacturers
multitasking, 241-242
Mustek scanners and Linux, 23
mv command, 227-228
mwm window manager, 114
mwrite command, 316
MX chipsets and XFree86, 119

N

National Instruments data-acquisition equipment and Linux,, 26
NCSA Mosaic for X Window Web browser, 59, 419
NEC

laptops and Linux, 433
monitors and XFree86, 133, 135
printers and Ghostscript, 288
printers and Linux, 24
Versa and Linux, 37

Netscape Navigator Web browser, 419
Network File System (NFS), 47, 72
New Media Ethernet cards and Linux, 18
NCR

and bootdisks, 45
chipsets and XFree86, 119
5380 controllers and Linux, 13
53c400 controllers and Linux, 13
53c406a controllers and Linux, 13
53c7x0 controllers and Linux, 13
CDR-35D CD-ROM drives and Linux, 16

ncurses library, 74
nice command, 362
Nikon scanners and Linux, 25
nn command, 75
NoteBook laptops and Linux, 33

NoteStar laptops and Linux, 33
NTeX see TeX
number command, 337

O

Oak Technologies
chipsets and XFree86, 118, 119
sound boards and Linux, 22

Objective C, 74, 442, 463 see also GNU C compiler
OCE printers and Ghostscript, 288
oclock command, 115, 142, 324
od command, 224
Okano/Wearnes CDD-110 CD-ROM drives

and bootdisks, 44, 45, 47
and Linux, 16

Okidata
printers and Ghostscript, 288
printers and Linux, 24

Olivetti laptops and Linux, 33
olvwm window manager, 113, 154
olwm window manager, 112, 113, 154
online-manual (man) pages, 74, 101, 213, 229-231
Ontrack Disk Manager, 11-12
OpenWindows, 110
Open Look, 75, 112, 154, 273
OPTi sound boards and Linux, 22
Optical (MO) drives and Linux, 16, 26
Optics Storage Dolphin 8000AT CD-ROM drives

and bootdisks, 44, 46, 47
and Linux, 16

Orchid CDS-3110 CD-ROM drives
and bootdisks, 44, 45, 47
and Linux, 16
SoundWave32 sound boards and Linux, 22

OSF/Motif see Motif
Ottawa PI/PI2 cards and Linux, 18

P

pack command, 298
Panasonic CD-ROM drives

and bootdisks, 44, 46, 47
and Linux, 16

parallel-port SCSI controllers and Linux, 13
paranoia command, 337
Pascal, 463
passwd command, 237
passwd file, 346-348, 349
passwords, 236-237, 359

changing, 237
choosing, 236

PC-COMM multiport controllers and Linux, 19
PCI bus, 7
PCMCIA devices, 106

Card Services, 37-38, 106
modems, 20

pcomm command, 394
Perl, 74, 211, 473-376

and permissions, 211
PEX, 75, 497-504
Philips/LMS CD-ROM drives

and bootdisks, 44, 45, 47
CM 205/225/202 CD-ROM drives and Linux, 16
CM 206 CD-ROM drives and Linux, 16

PhotoCD (XA) format and Linux, 16
pine command, 75
pipes, 244
pkgtool command, 93-95
PKZip, 88, 298, 301
PLIP network connections, 18
plug and play, 6
pointer see mouse
Polish, support for, 108
pom command, 337
Portugese, support for, 108
PostScript, 24, 275, 284, 285 see also Ghostscript
powerd daemon, 107
PPP (Point-to-Point Protocol), 18, 75, 79, 403, 404, 405, 407, 409
pppd command, 406-407
ppt command, 337
primes command, 337
printcap file, 103
printing and Linux, 24, 103-104, 254-255, 284-290 see also individual
printer manufacturers

Pro Movie Studio video-capture boards and Linux, 25
processes, 242
processors, 7 see also Intel, AMD, Cyrix, IIT
programming, 439-484 see also individual programming tools
Prostar laptops and Linux, 33
ps command, 370-371
psroff command, 275
PureData Ethernet cards and Linux, 18
pwd command, 205-206, 214

Q

QIC
QIC-20 drives and Linux, 15
QIC-40/80 drives and Linux, 15
QIC-117 drives and Linux, 15
QIC-3010/3020 drives and Linux, 15

Qlogic
and bootdisks, 46
ISP1020 controllers and Linux, 13
Qlogic/Control Concepts controllers and Linux, 13

Quanda video-capture boards and Linux, 25
Quarterdeck Desqview, 53
quota utilities, 74

R

rain command, 337
RAWRITE.EXE command, 43, 50, 85
rdjpegcom command, 323
RealTek chipsets and XFree86, 119
Real Audio, 23
red command, 274
Reveal

and bootdisks, 44, 45
FM Radio card and Linux, 26

Racal-Interlan Ethernet cards and Linux, 18
RAM, 7-10, 64-66, 84

installing when RAM is tight, 84-85
and swap partitions, 64-65

rcs (Revision Control System), 74
rdev command, 357-358

recovery packages, 358
removable drives, 17
Ricoh

GSI-8 controllers and Linux, 13
PCMCIA controllers and Linux, 38
printers and Ghostscript, 288
printers and Linux, 24

RLL controllers, 11
rlogin command, 430-431
rm command, 228-229, 377
robots command, 337
Rock Ridge Extensions and Linux, 16
roff command, 275
root user, 104-105
rootdisks, 42-50

choosing, 42, 48
creating, 49-50

rxvt shell program, 154
RZ1000 controllers and Linux, 11
rzsz command, 392-394

S

S3 chipsets and XFree86, 118
Sager laptops and Linux, 33
sail command, 338
Sangoma Frame Relay cards and Linux, 22
Sanyo H94A CD-ROM drives

and bootdisks, 44, 46,47
and Linux, 16

sasteroids command, 338
scanners, 24-25 see also individual scanner manufacturers
Schneider & Koch Ethernet cards and Linux, 18
SCO, 114

SCO UNIX, 4
SCSI controllers, 11, 12-14, 26, 75 see also individual controller
manufacturers

and bootdisks, 43-46, 47-48
Seagate controllers

ST-01 controllers and Linux, 13
ST-01/ST-02 controllers and bootdisks, 46

sc command, 74, 328
SDK laptops and Linux, 33

sdoom command, 335
sed command, 282-284
SEEQ Ethernet cards and Linux, 18
SEH laptops and Linux, 33
Sejin mouse and Linux, 23
sendmail command, 75, 81
serial ports and Linux, 79
seyon command, 75, 384-389
shared libraries, 451
Sharp laptops and Linux, 33
shells, 76, 237-248 see also individual shells

aliases, 245-246
and background commands, 241-242
command history, 244-245
help, 247-248
minimal completion, 245
and multitasking, 241-242
pipes, 244
processes, 242
standard input and output, 242-244
and variables, 239-241

shelltool shell program, 154
shutdown command, 101-102
Siemens Nixdorf laptops and Linux, 33
Sigma chipsets and XFree86, 120
SIIG multiport controllers and Linux, 19
Silicon Graphics, 114
Slackware, 26, 73, 78, 83, 92-94, 99,

103, 113, 117, 259, 274, 280, 292,
357
upgrading from previous versions, 92-94

SLIP (Serial Line Internet Protocol), 18, 79, 403, 404, 405
SLiRP, 403
Slurp, 437
SMC Ethernet cards and Linux, 18, 19
snail command, 338
SNI laptops and Linux, 33
Specialx multiport controllers and Linux, 20
Stallion multiport controllers and Linux, 19-20
Sony

CD-ROM drives and bootdisks, 44, 45, 47
CDU31A/CDU33A CD-ROM drives and Linux, 16
CDU-535/CDU-531 CD-ROM drives and Linux, 16

printers and Ghostscript, 278
SCSI multisession CD-ROM drives and Linux, 16

sound boards and Linux, 22-23, 104
spell command, 259, 270
standard input and output, 242-244
StarJet

printers and Ghostscript, 288
printers and Linux, 24

STB multiport controllers and Linux, 19
SVGAlib library, 74
Sun Microsystems, 114, 273

printers and Ghostscript, 288
printers and Linux, 24

SuperQuad CD-ROM drives and Linux, 16
superuser, logging in as, 351
SurfIt! Web browser, 419
swap partitions, setting up, 64-65, 71, 373, 375-377
swapoff command 377
swapon command, 376-377
sync command, 376
SyQuest drives and Linux, 16, 26, 52

T

Tadpole
laptops and Linux, 33
P1000 and Linux, 37

tail command, 224
tape drives, 15 see also individual drive manufacturers
tar command, 84, 303-311

and backups, 308-309
and floppies, 309
functions and options, 305-306
and tape backups, 309-310
unarchiving an archive, 306-307

Targa laptops and Linux, 33
Tcl (Tool Command Language), 75, 464-473 see also Tk, TclX
TclX, 75
TCP/IP, 74, 75, 79, 110, 394-400, 402

and X Window, 110-111
tcsh shell, 76
Teac CDD-55A CD-ROM drives

and bootdisks, 44, 46, 47

and Linux, 16
teachgammon command, 338
Tecmar tape drives and Linux, 15
Tektronix

printers and Ghostscript, 288
printers and Linux, 24

telecommunications and Linux, 384-394
telnet command, 431-432
term program, 74
tetris command, 338
TeX, 75. 279
Texas Instruments

laptops and Linux, 33-34
Travelmate 5100 and Linux, 37
Travelmate mouse and Linux, 23

textedit command, 273
texinfo command, 279-281
tin command, 75, 436
Tk, 75, 464, 465
tkdesk program, 296-297
tkWWW Web browser, 419
Toshiba

laptops and Linux, 34
mouse and Linux, 23
PCMCIA controllers and Linux, 38
T400CDT and Linux, 38

Total Peripherals laptops and Linux, 34
touchpads, 23
Trantor T128/T128F/T228 controllers

and bootdisks, 46
and Linux, 13

TravelPro laptops and Linux, 34
trek command, 338
Trident chipsets and XFree86, 119
trn command, 75, 436
troff command, 275
Tseng chipsets and XFree86, 118, 119, 120
Turtle Beach sound boards and Linux, 22
Twincom multiport controllers and Linux, 19
Twinhead laptops and Linux, 34
Tulip laptops and Linux, 34
twm window manager, 112, 113

U

ULSI processors and Linux, 7
UltraStor controllers and Linux, 13
UMSDOS, 46, 48, 49, 87, 88, 93
uname command, 414
uninterruptible power systems and Linux, 25-26, 106 see also individual manufacturers
UNIX, 4, 5, 17, 24, 38, 50, 101, 110,

113, 114, 147, 155, 198, 199, 204,
206, 214-215, 216, 217, 220, 221,
223, 231-232, 234, 248-249, 254,
258, 274, 275, 279, 286, 297, 298,
302, 303, 313, 318, 346, 349, 396
run-levels, 155-158

unzip command 298, 302-303
Usenet newsgroups, 432-437
Usenet Serial Board multiport controllers and Linux, 19
users, adding, 96-99
UUCP, 74, 422-427

V

Vadem PCMCIA controllers and Linux, 38
variables, 239-241
vi text editor, 76, 248-249, 250, 258, 259, 273, 275 see also elvis text editor
view command, 250
Video 7 chipsets and XFree86, 119
Video Blaster video-capture boards and Linux, 25
video-capture boards and Linux, 25 see also individual board
manufacturers
Videotext cards and Linux, 26
vim text editor, 76, 273
virtual terminals, 129, 235
VLB bus, 7
VLSI PCMCIA controllers and Linux, 38
Vobis laptops and Linux, 35
VT1500 video-capture boards and Linux, 25

W

wargames command, 339
Web browsers, 418-422

Weitek chipsets and XFree86, 118, 120
Western Digital, 11

chipsets and XFree86, 118, 119
Ethernet cards and Linux, 18, 44
WD7000 controllers and Linux, 13, 44

wildcards, 217-220
WinBook laptops and Linux, 35
window managers, 111-114 see also individual window managers

and titlebar, 111-112
WINE (Windows Emulator), 330
wish interpreter, 467
workbone command, 340
workman command, 75, 340
World Wide Web, 418-422
worm command, 339
WORM drives and Linux, 16, 26
worms command, 339
wrjpegcom command, 323
wump command, 339

X

X Consortium, 110
X Display Manager (XDM), 155-159

and run-levels, 155-159
X Window System, 6, 9, 11, 22, 37,

59, 76, 77, 79, 109-193, 198, 214,
259, 260, 271, 273, 285-286, 292,
294, 318, 324, 339, 451 see also
XFree86
games, 339-342
and programming, 451, 460-462

xabuse command, 334
xboard command, 75, 340
xclock command, 324
xdoom command, 335
xdos emulator, 329-330
xdpyinfo command, 325-326
xedit command, 271-273
Xerox

printers and Ghostscript, 288
printers and Linux, 24

xev command, 326

xeyes command, 341
xfig command, 319
xfilemanager command, 75
xfm command, 75, 146-147, 294-296
xfontsel command, 292
XForms, 455-456
xfranctint command, 75, 310
XFree86, 5, 6, 24, 37, 65, 75, 77, 78,

109-193, 217, 265, 497-507 see also
X Window System
and accounts, 146-147
and chipsets, 118
configuring, 117-193
dot clocks, probing for, 140-142
extensions, 497-504
font server, 160-164
and graphics cards, 118, 136-137
installing, 116-117
and keyboards, 127-128
and laptops, 122-123
modes, tuning, 144-145
and monitors, 133-136
and mouse, 130-133
and paths, 125-126
and RAM, 65
and run-levels, 155-158
and screen background, 162-163
screen section, 137-139
and server, 114-115
and ServerFlags section, 126-127
starting, 115-116, 142-144, 155-160
stopping, 144
updating, 117
and virtual screens, 139
and virtual terminals, 129, 235
and window managers, 111-114
and xf86config program, 139-140
and XF86Config file, 121

xfs command, 161
xinit file, 116, 142
xlander command, 341
xless command, 224
xlock command, 75, 326

xlogo command, 341
xlsfonts command, 160, 290-292
xmag command, 326-327
xmahjongg command, 341
xman command, 112-113, 213, 230, 327, 461-462 see also online-manual pages
xmh command, 416
xminicomm command, 389
xpaint command, 75, 320-321
xroach command, 341
xsetroot command, 142, 162-163
xspider command, 342
xspread command, 326
xtetris command, 328
xterm command, 115, 142, 147, 148-154, 198, 213

and colors, 151-152
command-line parameters, 153
copying and pasting between windows, 153-154
and fonts, 151-152
and resource files, 150-151
and scrollbars, 150
size of window, 149

xv program, 75, 77, 163-164, 321-322
xvier command, 342
XView, 75
xxgdb command, 74, 461
xzoom program, 106

Y

yacc command, 462

Z

Zenith
Ethernet cards and Linux, 18
laptops and Linux, 35

Zeos laptops and Linux, 35
zip command, 298, 301-303
Zip drives and Linux, 16
zipcloak command, 303
zipgrep command, 303
zipinfo command, 303

zipnote command, 303
zipsplit command, 303
zsh shell, 76
ZyXEL fax modems and Linux, 20

Table of Contents

